Phase space of a gravitating particle and dimensional reduction at the Planck scale
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 192-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several approaches to quantizing general relativity suggest that quantum gravity at very short distances behaves effectively as a two-dimensional theory. The mechanism of this dimensional reduction is not yet understood. We attempt to explain it by studying the phase space of a test particle coupled to a gravitational field. The general relativity constraints relate the particle energy–momentum to some curvature invariants taking values in a group manifold. Some directions in the resulting momentum space turn out to be compact, which leads to a kind of "inverse Kaluza–Klein reduction" at short distances.
Keywords: quantum gravity, Wilson loop, magnetic monopole, curved momentum space.
@article{TMF_2015_185_1_a17,
     author = {A. N. Starodubtsev},
     title = {Phase space of a~gravitating particle and dimensional reduction at {the~Planck} scale},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {192--198},
     year = {2015},
     volume = {185},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a17/}
}
TY  - JOUR
AU  - A. N. Starodubtsev
TI  - Phase space of a gravitating particle and dimensional reduction at the Planck scale
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 192
EP  - 198
VL  - 185
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a17/
LA  - ru
ID  - TMF_2015_185_1_a17
ER  - 
%0 Journal Article
%A A. N. Starodubtsev
%T Phase space of a gravitating particle and dimensional reduction at the Planck scale
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 192-198
%V 185
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a17/
%G ru
%F TMF_2015_185_1_a17
A. N. Starodubtsev. Phase space of a gravitating particle and dimensional reduction at the Planck scale. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 192-198. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a17/

[1] J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. Lett., 85:5 (2000), 924–927, arXiv: ; 93:13 (2004), 131301, 4 pp., arXiv: ; Phys. Rev. D, 72:6 (2005), 064014, 24 pp., arXiv: hep-th/0002050hep-th/0404156hep-th/0505154 | DOI | MR | Zbl | DOI | MR | DOI

[2] S. Weinberg, “Ultraviolet divergences in quantum theories of gravitation”, General Relativity: An Einstein Centenary Survey, eds. S. W. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1979, 790–831 ; M. Reuter, F. Saueressig, Phys. Rev. D, 65:6 (2002), 065016, 26 pp., arXiv: ; D. F. Litim, Phys. Rev. Lett., 92:20 (2004), 201301, 4 pp., arXiv: ; M. Niedermaier, Class. Quantum Grav., 24:18 (2007), R171–R230, arXiv: hep-th/0110054hep-th/0312114gr-qc/0610018 | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[3] S. Carlip, AIP Conf. Proc., 1196:1 (2009), 72–80, arXiv: 0909.3329 | DOI

[4] M. P. Bronshtein, “Kvantovaya teoriya slabykh gravitatsionnykh polei”, Einshteinovskii sbornik (1980–1981), eds. I. Yu. Kobzarev, Nauka, M., 1985, 267–282 | Zbl

[5] G. 't Hooft, Class. Quantum Grav., 10:8 (1993), 1653–1664 ; 13:5 (1996), 1023–1039 | DOI | MR | Zbl | DOI | MR | Zbl

[6] H. J. Matschull, M. Welling, Class. Quantum Grav., 15:10 (1998), 2981–3030, arXiv: gr-qc/9708054 | DOI | MR | Zbl

[7] I. Ya. Arefeva, TMF, 43:1 (1980), 111–116 | DOI | MR | Zbl

[8] A. Yu. Alekseev, A. Z. Malkin, Commun. Math. Phys., 169:1 (1995), 99–119, arXiv: ; C. Meusburger, B. J. Schroers, Nucl. Phys. B, 738:3 (2006), 425–456, arXiv: hep-th/9312004hep-th/0505143 | DOI | MR | Zbl | DOI | MR | Zbl

[9] G. Amelino-Camelia, D. V. Ahluwalia, Internat. J. Modern Phys. D, 11:01 (2002), 35–59, arXiv: ; J. Kowalski-Glikman, “Introduction to doubly special relativity”, Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Physics, 669, eds. J. Kowalski-Glikman, G. Amelino-Camelia, Springer, Berlin, 2005, 131–159, arXiv: gr-qc/0012051hep-th/0405273 | DOI | MR | Zbl | DOI

[10] S. W. MacDowell, F. Mansouri, Phys. Rev. Lett., 38:14 (1977), 739–742 | DOI | MR

[11] G. 't Hooft, Nucl. Phys. B, 79:2 (1974), 276–284 | DOI

[12] T. T. Wu, C. N. Yang, Phys. Rev. D, 12:12 (1975), 3845–3857 | DOI | MR

[13] P. A. M. Dirac, Proc. Roy. Soc. A, 133:821 (1931), 60–72 | DOI

[14] L. Freidel, E. R. Livine, Phys. Rev. Lett., 96:22 (2006), 221301, 4 pp., arXiv: hep-th/0512113 | DOI | MR | Zbl