Generalized Pascal's triangles and singular elements of modules of Lie algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 139-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of determining the multiplicity function $m_{\xi}^{\otimes^p\omega}$ in the tensor power decomposition of a module of a semisimple algebra $\mathfrak{g}$ into irreducible submodules. For this, we propose to pass to the corresponding decomposition of a singular element $\Psi((L_g^\omega)^{\otimes^p})$ of the module tensor power into singular elements of irreducible submodules and formulate the problem of determining the function $M_{\xi}^{\\otimes^p\omega}$. This function satisfies a system of recurrence relations that corresponds to the procedure for multiplying modules. To solve this problem, we introduce a special combinatorial object, a generalized $(g,\omega)$ pyramid, i.e., a set of numbers $(p,\{m_i\})_{g,\omega}$ satisfying the same system of recurrence relations. We prove that $M_{\xi}^{\otimes^p\omega}$ can be represented as a linear combination of the corresponding $(p,\{m_i\})_{g,\omega}$. We illustrate the obtained solution with several examples of modules of the algebras $sl(3)$ and $so(5)$.
Keywords: theory of Lie algebra representation, tensor product of modules, Weyl formula.
@article{TMF_2015_185_1_a12,
     author = {V. D. Lyakhovsky and O. V. Postnova},
     title = {Generalized {Pascal's} triangles and singular elements of modules of {Lie} algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {139--150},
     year = {2015},
     volume = {185},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a12/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
AU  - O. V. Postnova
TI  - Generalized Pascal's triangles and singular elements of modules of Lie algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 139
EP  - 150
VL  - 185
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a12/
LA  - ru
ID  - TMF_2015_185_1_a12
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%A O. V. Postnova
%T Generalized Pascal's triangles and singular elements of modules of Lie algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 139-150
%V 185
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a12/
%G ru
%F TMF_2015_185_1_a12
V. D. Lyakhovsky; O. V. Postnova. Generalized Pascal's triangles and singular elements of modules of Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 139-150. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a12/

[1] P. P. Kulish, V. D. Lyakhovskii, O. V. Postnova, TMF, 171:2 (2012), 283–293 | DOI | MR | Zbl

[2] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. Conf. Ser., 343:1 (2012), 012095, 7 pp. | DOI

[3] H. B. Curry, Foundations of Mathematical Logic, Dover, New York, 1977 | MR | Zbl

[4] H. Bethe, Z. Phys., 71:3–4 (1931), 205–226 | DOI | Zbl

[5] L. A. Takhtadzhyan, L. D. Faddeev, Zap. nauchn. sem. LOMI, 109 (1981), 134–178 | DOI | MR | Zbl

[6] B. A. Bondarenko, Obobschennye treugolniki i piramidy Paskalya, ikh fraktaly, grafy i prilozheniya, Fan, Tashkent, 1990 | MR

[7] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. Conf. Ser., 343:1 (2012), 012070 | DOI

[8] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. Conf. Ser., 346:1 (2012), 012012, arXiv: 1106.2002 | DOI

[9] A. N. Kirillov, Zap. nauchn. sem. LOMI, 131 (1983), 88–105 | MR

[10] A. N. Kirillov, N. Yu. Reshetikhin, Zap. nauchn. sem. POMI, 205 (1993), 30–37 | DOI | MR | Zbl

[11] M. Kleber, “Finite dimensional representations of quantum affine algebras”, arXiv: math/9809087 | MR

[12] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, Berlin, 1997 | MR