Splints of root systems for special Lie subalgebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 127-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider special embeddings of a Lie subalgebra into simple Lie algebras. We classify the projections of algebra root systems and obtain the conditions under which a splint appears and the branching coefficients coincide with the weight multiplicities. Although such a coincidence is infrequent, it turns out to be connected with the Gelfand–Tsetlin basis.
Keywords: Lie algebra, special subalgebra, branching, weight multiplicity, splint.
@article{TMF_2015_185_1_a11,
     author = {V. D. Lyakhovsky and A.A. Nazarov and P. I. Kakin},
     title = {Splints of root systems for special {Lie} subalgebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {127--138},
     year = {2015},
     volume = {185},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a11/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
AU  - A.A. Nazarov
AU  - P. I. Kakin
TI  - Splints of root systems for special Lie subalgebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 127
EP  - 138
VL  - 185
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a11/
LA  - ru
ID  - TMF_2015_185_1_a11
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%A A.A. Nazarov
%A P. I. Kakin
%T Splints of root systems for special Lie subalgebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 127-138
%V 185
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a11/
%G ru
%F TMF_2015_185_1_a11
V. D. Lyakhovsky; A.A. Nazarov; P. I. Kakin. Splints of root systems for special Lie subalgebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a11/

[1] D. Richter, J. Geom., 103:1 (2012), 103–117, arXiv: 0807.0640 | DOI | MR | Zbl

[2] V. D. Lyakhovsky, A. A. Nazarov, Zap. nauchn. sem. POMI, 398 (2012), 162–178, arXiv: 1111.6787 | DOI | MR

[3] E. B. Dynkin, Matem. sb., 30(72):2 (1952), 349–462 | MR | Zbl

[4] E. B. Dynkin, Tr. MMO, 1 (1952), 39–166 | MR | Zbl

[5] A. N. Minchenko, Tr. MMO, 67 (2006), 256–293 | MR | Zbl

[6] W. A. de Graaf, J. Algebra, 325:1 (2011), 416–430 | DOI | MR | Zbl

[7] M. Larouche, J. Patera, J. Phys. A: Math. Theor., 44:11 (2011), 115203, 37 pp., arXiv: 1101.6043 | DOI | MR | Zbl

[8] M. Larouche, M. Nesterenko, J. Patera, J. Phys. A: Math. Theor., 42:48 (2009), 485203, 15 pp. | DOI | MR | Zbl

[9] V. Lyakhovsky, A. Nazarov, J. Phys. A: Math. Theor., 44:7 (2011), 075205, 20 pp., arXiv: 1007.0318 | DOI | MR | Zbl

[10] G. Lehrer, R. Zhang, J. Algebra, 306:1 (2006), 138–174 | DOI | MR | Zbl

[11] R. Howe, “Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond”, The Schur Lectures (1992), Israel Mathematical Conference Proceedings, 8, eds. I. I. Piatetski-Shapiro, S. Gelbart, Bar-Ilan Univ., Ramat Gan, 1995, 1–182 | MR | Zbl

[12] J. R. Stembridge, Represent. Theory, 7 (2003), 404–439 | DOI | MR | Zbl

[13] J. R. Stembridge, “Computational aspects of root systems, Coxeter groups, and Weyl characters”, Interaction of Combinatorics and Representation Theory, MSJ Memories, 11, eds. J. R. Stembridge, J.-Y. Thibon, M. A. A. van Leeuwen, Math. Soc. Japan, Tokyo, 2001, 1–38 | MR | Zbl

[14] E. Plotkin, A. Semenov, N. Vavilov, Internat. J. Algebra Comput., 8:01 (1998), 61–95 | DOI | MR | Zbl

[15] N. Bourbaki, Lie groups and Lie algebras, Springer, 2002 | MR | Zbl

[16] R. Moody, J. Patera, Bull. Amer. Math. Soc. (N. S.), 7:1 (1982), 237–242 | DOI | MR | Zbl