Chebyshev polynomials for a~three-dimensional algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 118-126
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the direct correspondence between anti-invariant Weyl functions and multivariate Chebyshev polynomials, which allows obtaining the Chebyshev polynomials themselves. We illustrate the obtained results with polynomials for the algebra $C_3$.
Keywords:
irreducible representation of an algebra, singular element,
Chebyshev polynomial.
@article{TMF_2015_185_1_a10,
author = {V. D. Lyakhovsky},
title = {Chebyshev polynomials for a~three-dimensional algebra},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {118--126},
publisher = {mathdoc},
volume = {185},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a10/}
}
V. D. Lyakhovsky. Chebyshev polynomials for a~three-dimensional algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 118-126. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a10/