Chebyshev polynomials for a~three-dimensional algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 118-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the direct correspondence between anti-invariant Weyl functions and multivariate Chebyshev polynomials, which allows obtaining the Chebyshev polynomials themselves. We illustrate the obtained results with polynomials for the algebra $C_3$.
Keywords: irreducible representation of an algebra, singular element, Chebyshev polynomial.
@article{TMF_2015_185_1_a10,
     author = {V. D. Lyakhovsky},
     title = {Chebyshev polynomials for a~three-dimensional algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a10/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Chebyshev polynomials for a~three-dimensional algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 118
EP  - 126
VL  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a10/
LA  - ru
ID  - TMF_2015_185_1_a10
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Chebyshev polynomials for a~three-dimensional algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 118-126
%V 185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a10/
%G ru
%F TMF_2015_185_1_a10
V. D. Lyakhovsky. Chebyshev polynomials for a~three-dimensional algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 118-126. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a10/