Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals in models of critical dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for calculating the $\beta$-function and anomalous dimensions in critical dynamics models that is convenient for numerical calculations in the framework of the renormalization group and $\varepsilon$-expansion. Those quantities are expressed in terms of the renormalized Green's function, which is renormalized using the operation $R$ represented in a form that allows reducing ultraviolet divergences of Feynman diagrams explicitly. The integrals needed for the calculation do not contain poles in $\varepsilon$ and are convenient for numerical integration.
Keywords: renormalization group, $\varepsilon$-expansion, multiloop diagram, critical exponent.
@article{TMF_2015_185_1_a0,
     author = {L. Ts. Adzhemyan and S. E. Vorobyeva and M. V. Kompaniets},
     title = {Representation of the~$\beta$-function and anomalous dimensions by nonsingular integrals in models of critical dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--11},
     year = {2015},
     volume = {185},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a0/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - S. E. Vorobyeva
AU  - M. V. Kompaniets
TI  - Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals in models of critical dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 3
EP  - 11
VL  - 185
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a0/
LA  - ru
ID  - TMF_2015_185_1_a0
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A S. E. Vorobyeva
%A M. V. Kompaniets
%T Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals in models of critical dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 3-11
%V 185
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a0/
%G ru
%F TMF_2015_185_1_a0
L. Ts. Adzhemyan; S. E. Vorobyeva; M. V. Kompaniets. Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals in models of critical dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 185 (2015) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/TMF_2015_185_1_a0/

[1] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | MR

[2] K. G. Chetyrkin, A. L. Kataev, F. V. Tkachev, Phys. Lett. B, 99:2 (1981), 147–150 ; Erratum 101:1 (1981), 457–458 ; K. G. Chetyrkin, S. G. Gorishny, S. A. Larin, F. V. Tkachov, Phys. Lett. B, 132:4–6 (1983), 351–354 ; Preprint P-0453, INR, Moscow, 1986; D. I. Kazakov, Phys. Lett. B, 133:6 (1983), 406–410 ; Д. И. Казаков, ТМФ, 58:3 (1984), 343–353 ; H. Kleinert, J. Neu, V. Shulte-Frohlinde, K. G. Chetyrkin, S. A. Larin, Phys. Lett. B, 272:1–2 (1991), 39–44 ; Erratum 319:4 (1993), 545 | DOI | MR | DOI | MR | DOI | DOI | DOI | MR | DOI | DOI | MR

[3] H.-K. Janssen, U. C. Täuber, Ann. Phys., 315:1 (2005), 147–192, arXiv: cond-mat/0409670 | DOI | MR | Zbl

[4] N. V. Antonov, A. N. Vasilev, TMF, 60:1 (1984), 59–71 | DOI

[5] L. Ts. Adzhemyan, A. N. Vasilev, Yu. S. Kabrits, M. V. Kompaniets, TMF, 119:1 (1999), 73–92 | DOI | DOI | MR | Zbl

[6] L. Ts. Adzhemyan, N. V. Antonov, M. V. Kompaniets, A. N. Vasil'ev, Internat. J. Modern Phys. B, 17:10 (2003), 2137–2170 | DOI | Zbl

[7] L. Ts. Adzhemyan, M. V. Kompaniets, TMF, 169:1 (2011), 100–111 | DOI | DOI | Zbl

[8] L. Ts. Adzhemyan, M. V. Kompaniets, S. V. Novikov, V. K. Sazonov, TMF, 175:3 (2013), 325–336 | DOI | DOI | MR | Zbl

[9] L. Ts. Adzhemyan, M. V. Kompaniets, J. Phys.: Conf. Ser., 523 (2014), 012049, arXiv: 1309.5621 | DOI

[10] O. I. Zavyalov, Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[11] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 77, Oxford Univ. Press, Oxford, 1989 | MR