Limit transition to the light-front QCD and a quark–antiquark
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 456-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a transition to the light-front quantum chromodynamics from theories quantized on spacelike planes that approach the light front. This limit transition differs for zero and nonzero modes, which leads to the appearance of a semiphenomenological parameter that can be used to describe confinement effects. As an illustration, we consider the problem of the bound states of a quark–antiquark pair in $2{+}1$ dimensions. We use a lattice gauge-invariant regularization in the transverse space and consequently obtain an analogue of the 't Hooft equation. We also discuss the possibility of calculating the spectrum of bound states in $3{+}1$ dimensions.
Keywords: Hamiltonian approach, quantum chromodynamics, mass spectrum, light front.
@article{TMF_2015_184_3_a9,
     author = {R. A. Zubov and E. V. Prokhvatilov and M. Yu. Malyshev},
     title = {Limit transition to the~light-front {QCD} and a~quark{\textendash}antiquark},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {456--464},
     year = {2015},
     volume = {184},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a9/}
}
TY  - JOUR
AU  - R. A. Zubov
AU  - E. V. Prokhvatilov
AU  - M. Yu. Malyshev
TI  - Limit transition to the light-front QCD and a quark–antiquark
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 456
EP  - 464
VL  - 184
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a9/
LA  - ru
ID  - TMF_2015_184_3_a9
ER  - 
%0 Journal Article
%A R. A. Zubov
%A E. V. Prokhvatilov
%A M. Yu. Malyshev
%T Limit transition to the light-front QCD and a quark–antiquark
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 456-464
%V 184
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a9/
%G ru
%F TMF_2015_184_3_a9
R. A. Zubov; E. V. Prokhvatilov; M. Yu. Malyshev. Limit transition to the light-front QCD and a quark–antiquark. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 456-464. http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a9/

[1] B. L. G. Bakker, A. Bassetto, S. J. Brodsky, W. Broniowski, S. Dalley, T. Frederico, S. D. Glazek, J. R. Hiller, C.-R. Ji, V. Karmanov, D. Kulshreshtha, J.-F. Mathiot, W. Melnitchouk, G. A. Miller, J. Papavassiliou, W. N. Polyzou, N. G. Stefanis, J. P. Vary, A. Ilderton, T. Heinzl, Nucl. Phys. B. – Proc. Suppl., 251–252 (2014), 165–174, arXiv: 1309.6333 | DOI

[2] P. A. M. Dirac, Rev. Modern Phys., 21:3 (1949), 392–398 | DOI | MR

[3] V. A. Franke, Yu. V. Novozhilov, S. A. Paston, E. V. Prokhvatilov, “Quantization of field theory on the light front”, Focus on Quantum Field Theory, ed. O. Kovras, Nova Science Publ., New York, 2005, 23–81, arXiv: hep-th/0404031

[4] M. Burkardt, A. Langnau, Phys. Rev. D, 44:4 (1991), 1187–1197 | DOI | MR

[5] M. Burkardt, A. Langnau, Phys. Rev. D, 44:12 (1991), 3857–3867 | DOI | MR

[6] S. A. Paston, V. A. Franke, TMF, 112:3 (1997), 399–416, arXiv: hep-th/9901110 | DOI | DOI

[7] E. V. Prokhvatilov, V. A. Franke, YaF, 49:4 (1989), 1109–1117

[8] E. V. Prokhvatilov, H. W. L. Naus, H.-J. Pirner, Phys. Rev. D, 51:6 (1995), 2933–2942, arXiv: hep-ph/9406275 | DOI

[9] E. M. Ilgenfrits, S. A. Paston, G. Yu. Pirner, E. V. Prokhvatilov, V. A. Franke, TMF, 148:1 (2006), 89–101, arXiv: hep-th/0610020 | DOI | DOI | MR

[10] E. V. Prokhvatilov, V. A. Franke, YaF, 47 (1988), 882–883

[11] M. Yu. Malyshev, E. V. Prokhvatilov, TMF, 169:2 (2011), 272–284 | DOI | DOI | Zbl

[12] H. M. Fried, P. H. Tsang, Y. Gabellini, T. Grandou, Y. M. Sheu, Ann. Phys., 359 (2015), 1–19, arXiv: 1412.2072 | DOI | MR | Zbl

[13] S. S. Chabysheva, J. R. Hiller, Ann. Phys., 337, 143–152, arXiv: 1207.7128 | DOI | MR