Dynamics of interacting particles with $SL(2,\mathbb R)$ symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 499-504 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the evolution principles for a system of classical point-particles whose interaction has an additional $SL(2,\mathbb R)$ symmetry. We establish a relation between the additional conservation laws of the nonrelativistic mechanics and the appropriate conservation laws (in terms of the Beltrami coordinates) in the anti-de Sitter space.
Keywords: relativity principle, relativistic kinematics, anti-de Sitter space, Beltrami coordinates.
@article{TMF_2015_184_3_a14,
     author = {S. N. Manida},
     title = {Dynamics of interacting particles with $SL(2,\mathbb R)$ symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {499--504},
     year = {2015},
     volume = {184},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a14/}
}
TY  - JOUR
AU  - S. N. Manida
TI  - Dynamics of interacting particles with $SL(2,\mathbb R)$ symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 499
EP  - 504
VL  - 184
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a14/
LA  - ru
ID  - TMF_2015_184_3_a14
ER  - 
%0 Journal Article
%A S. N. Manida
%T Dynamics of interacting particles with $SL(2,\mathbb R)$ symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 499-504
%V 184
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a14/
%G ru
%F TMF_2015_184_3_a14
S. N. Manida. Dynamics of interacting particles with $SL(2,\mathbb R)$ symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 499-504. http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a14/

[1] H. Bateman, Proc. London Math. Soc., 7:1 (1909), 70–89 | DOI | Zbl

[2] V. de Alfaro, S. Fubini, G. Furlan, Nuovo Cimento A, 34:4 (1976), 569–612 | DOI

[3] R. Jackiw, Ann. Phys., 201:1 (1990), 83–116 | DOI | MR

[4] R. Jackiw, Ann. Phys., 129:1 (1980), 183–200 | DOI | MR

[5] D. Deser, R. Jackiw, G.'t Hooft, Ann. Phys., 152:1 (1984), 220–235 | DOI | MR

[6] P. Claus, M. Derix, R. Kallosh, J. Kumar, P. K. Townsend, A. van Proyen, Phys. Rev. Lett., 81:21 (1998), 4553–4556 | DOI | MR | Zbl

[7] L. O'Raifeartaigh, V. V. Sreedhar, Ann. Phys., 293:2 (2001), 215–227 | DOI | MR | Zbl

[8] O. Jahn, V. V. Sreedhar, Am. J. Phys., 69:10 (2001), 1039–1043 | DOI | MR | Zbl

[9] S. N. Manida, TMF, 169:2 (2011), 323–336 | DOI | DOI | MR | Zbl

[10] T. Angsachon, S. N. Manida, M. E. Chaikovskii, TMF, 176:1 (2013), 13–21 | DOI | DOI | MR | Zbl