Dipole-based description of the $\text{pp}$ interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 465-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider inelastic proton–proton interactions at high energies in transverse spatial coordinates. Colliding hadrons are represented as ensembles of color dipoles. We use prescriptions of the Müller dipole cascade model for the elementary interaction probability. Multiparton interactions are taken into account in the framework of the eikonal approach. We consider two variants of the model, namely, with and without confinement taken into account. We obtain the asymptotic form of the collision profile function for large impact parameters. We use the considered approach to find the slope of the diffraction cone in elastic pp scattering at high energies and compare our results with other models describing profile functions and with the experimental data.
Keywords: quantum chromodynamics, scattering amplitude, dipole model, slope of the diffraction cone.
@article{TMF_2015_184_3_a10,
     author = {V. N. Kovalenko},
     title = {Dipole-based description of the~$\text{pp}$ interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--474},
     year = {2015},
     volume = {184},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a10/}
}
TY  - JOUR
AU  - V. N. Kovalenko
TI  - Dipole-based description of the $\text{pp}$ interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 465
EP  - 474
VL  - 184
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a10/
LA  - ru
ID  - TMF_2015_184_3_a10
ER  - 
%0 Journal Article
%A V. N. Kovalenko
%T Dipole-based description of the $\text{pp}$ interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 465-474
%V 184
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a10/
%G ru
%F TMF_2015_184_3_a10
V. N. Kovalenko. Dipole-based description of the $\text{pp}$ interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 465-474. http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a10/

[1] L. McLerran, R. Venugopalan, Phys. Rev. D, 49:5 (1994), 2233–2241, arXiv: hep-ph/9309289 | DOI

[2] L. McLerran, R. Venugopalan, Phys. Rev. D, 49:7 (1994), 3352–3355, arXiv: hep-ph/9311205 | DOI

[3] T. Sjostrand, P. Z. Skands, JHEP, 03 (2004), 053, 70 pp. | DOI

[4] M. Diehl, D. Ostermeier, A. Schäfer, JHEP, 03 (2012), 089, 144 pp., arXiv: 1111.0910 | DOI

[5] A. Krasnitz, R. Venugopalan, Nucl. Phys. A, 698:1 (2002), 209–216, arXiv: hep-ph/0104168 | DOI | MR

[6] A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. A. Maldonado Cervantes, G. Paić, Phys. Rev. Lett., 111:4 (2013), 042001, 4 pp., arXiv: 1303.6326 | DOI | MR

[7] M. Floris, J. Phys.: Conf. Ser., 270:1 (2011), 012046, 4 pp. | DOI

[8] G. Gustafson, Acta Phys. Polon. B, 40:7 (2009), 1981–1996, arXiv: 0905.2492

[9] K. D. Anderson, D. A. Ross, M. G. Sotiropoulos, Phys. Lett. B, 380:1–2 (1996), 127–133, arXiv: hep-ph/9602275 | DOI

[10] G. Altarelli, G. Parisi, Nucl. Phys. B, 126:2 (1977), 298–318 | DOI

[11] F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Ann. Rev. Nucl. Part. Sci., 60 (2010), 463–489, arXiv: 1002.0333 | DOI

[12] H. Weigert, Prog. Part. Nucl. Phys., 55:2 (2005), 461–565, arXiv: hep-ph/0501087 | DOI | MR

[13] A. H. Mueller, Nucl. Phys. B, 415:2 (1994), 373–385 | DOI

[14] A. H. Mueller, G. P. Salam, Nucl. Phys. B, 475:1 (1996), 293–317, arXiv: hep-ph/9605302 | DOI

[15] V. V. Vechernin, I. A. Lakomov, A. M. Puchkov, Vestn. S.-Peterb. un-ta. Ser. 4. Fizika. Khimiya, 2010, vyp. 3, 3–16

[16] M. A. Braun, V. V. Vechernin, J. Phys. G: Nucl. Part. Phys., 16:11 (1990), 1615–1626 | DOI

[17] E. Avsar, G. Gustafson, L. Lonnblad, JHEP, 12 (2007), 012, 29 pp., arXiv: 0709.1368 | DOI

[18] C. Flensburg, G. Gustafson, L. Lonnblad, Eur. Phys. J. C, 60:2 (2009), 233–247, arXiv: 0807.0325 | DOI

[19] M. Rybczynski, Z. Wlodarczyk, J. Phys. G: Nucl. Part. Phys., 41:1 (2013), 015106, arXiv: 1307.0636 | DOI

[20] M. A. Braun, V. V. Vechernin, TMF, 139:3, 381–404 | DOI | DOI | MR | Zbl

[21] I. M. Dremin, V. A. Nechitailo, Nucl. Phys. A, 916 (2013), 241–248, arXiv: 1306.5384 | DOI

[22] V. A. Schegelsky, M. G. Ryskin, Phys. Rev. D, 85:9 (2013), 094024, 4 pp., arXiv: 1112.3243 | DOI

[23] V. Vechernin, I. Lakomov, PoS (Baldin ISHEPP XXI), 2012, 072, 12 pp., arXiv: 1212.2667

[24] V. N. Kovalenko, YaF, 76:10 (2013), 1251–1257, arXiv: 1211.6209 | DOI

[25] V. Kovalenko, V. Vechernin, PoS (Baldin ISHEPP XXI), 2012, 077, 20 pp., arXiv: 1212.2590

[26] V. Kovalenko, PoS (QFTHEP 2013), 2013, 052, 7 pp.