The functional squeeze operator algebra in Maxwell–Chern–Simons electrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 367-379 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using annihilation and creation squeeze operators, we construct a basis of Hermitian generators obeying the $SU(2)$ Lie algebra. We discuss the relations between the Maxwell–Chern–Simons electrodynamics vacuum and the normal vacuum and show that the most general Bogoliubov transformation is just a functional rotation in the Fock space.
Keywords: Maxwell–Chern–Simons electrodynamics, squeezed state, Bogoliubov transformation.
@article{TMF_2015_184_3_a1,
     author = {A. A. Andrianov and S. S. Kolevatov and R. Soldati},
     title = {The~functional squeeze operator algebra~in {Maxwell{\textendash}Chern{\textendash}Simons} electrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--379},
     year = {2015},
     volume = {184},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a1/}
}
TY  - JOUR
AU  - A. A. Andrianov
AU  - S. S. Kolevatov
AU  - R. Soldati
TI  - The functional squeeze operator algebra in Maxwell–Chern–Simons electrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 367
EP  - 379
VL  - 184
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a1/
LA  - ru
ID  - TMF_2015_184_3_a1
ER  - 
%0 Journal Article
%A A. A. Andrianov
%A S. S. Kolevatov
%A R. Soldati
%T The functional squeeze operator algebra in Maxwell–Chern–Simons electrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 367-379
%V 184
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a1/
%G ru
%F TMF_2015_184_3_a1
A. A. Andrianov; S. S. Kolevatov; R. Soldati. The functional squeeze operator algebra in Maxwell–Chern–Simons electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 367-379. http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a1/

[1] S. M. Carroll, G. B. Field, R. Jackiw, Phys. Rev. D, 41:4 (1990), 1231–1240 | DOI

[2] A. A. Andrianov, R. Soldati, Phys. Rev. D, 51:10 (1995), 5961–5964, arXiv: hep-th/9405147 | DOI

[3] D. Colladay, V. A. Kostelecký, Phys. Rev. D, 55:11 (1997), 6760–6774, arXiv: hep-ph/9703464 | DOI

[4] S. R. Coleman, S. L. Glashow, Phys. Lett. B, 405:3–4 (1997), 249–252, arXiv: hep-ph/9703240 | DOI

[5] R. C. Myers, M. Pospelov, Phys. Rev. Lett., 90:21 (2003), 211601, 4 pp., arXiv: hep-ph/0301124 | DOI | MR | Zbl

[6] R. Montemayor, L. F. Urrutia, Phys. Rev. D, 72:4 (2005), 045018, 24 pp., arXiv: hep-ph/0505135 | DOI | MR

[7] V. A. Kostelecký, M. Mewes, Phys. Rev. D, 66:5 (2002), 056005, 24 pp., arXiv: hep-ph/0205211 | DOI

[8] G. M. Shore, Contemp. Phys., 44:6 (2003), 503–521, arXiv: gr-qc/0304059 | DOI

[9] H.-C. Cheng, M. A. Luty, S. Mukohyama, J. Thaler, JHEP, 05 (2006), 076, 51 pp., arXiv: hep-th/0603010 | DOI

[10] A. A. Andrianov, R. Soldati, L. Sorbo, Phys. Rev. D, 59:2 (1999), 025002, 13 pp., arXiv: hep-th/9806220 | DOI | MR

[11] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, S. Mukohyama, JHEP, 05 (2004), 074, 36 pp., arXiv: hep-th/0312099 | DOI | MR

[12] L. Abbott, P. Sikivie, Phys. Lett. B, 120:1–3 (1983), 133–136 | DOI

[13] M. Kuster, G. Raffelt, B. Beltrán (eds.), Axions: Theory, Cosmology and Experimental Searches, Lecture Notes in Physics, 741, Springer, Berlin, 2008 | DOI | Zbl

[14] E. W. Kolb, M. S. Turner, The Early Universe, Frontiers in Physics, 69, Addison-Wesley, Redwood City, CA, 1990 ; Y. Sofue, V. Rubin, Ann. Rev. Astron. Astrophys., 39 (2001), 137–174 ; S. J. Asztalos, E. Daw, H. Peng, L. J. Rosenberg, D. B. Yu, C. Hagmann, D. Kinion, W. Stoeffl, K. van Bibber, J. LaVeigne, P. Sikivie, N. S. Sullivan, D. B. Tanner F. Nezrick, D. M. Moltz, Astrophys. J., 571:1 (2002), L27–L30 | MR | Zbl | DOI | DOI

[15] K. O. Lapidus, V. M. Emel'yanov, Phys. Part. Nucl., 40:1 (2009), 29–48 | DOI

[16] I. Tserruya, “Electromagnetic Probes”, Relativistic Heavy Ion Physics, Elementary Particles, Nuclei and Atoms, 23, ed. R. Stock, Springer, Heidelberg, 2010, 176–207 pp., arXiv: 0903.0415 | DOI

[17] A. A. Andrianov, D. Espriu, P. Giacconi, R. Soldati, JHEP, 09 (2009), 057, 15 pp., arXiv: 0907.3709 | DOI

[18] A. A. Andrianov, D. Espriu, Phys. Lett. B, 663:5 (2008), 450–455, arXiv: ; A. A. Andrianov, D. Espriu, V. A. Andrianov, Phys. Lett. B, 678:4 (2009), 416–421 0709.0049 | DOI | DOI

[19] D. Kharzeev, R. D. Pisarski, M. H. G. Tytgat, Phys. Rev. Lett., 81:3 (1998), 512–515, arXiv: ; K. Buckley, T. Fugleberg, A. Zhitnitsky, Phys. Rev. Lett., 84:21 (2000), 4814–4817, arXiv: ; D. Kharzeev, Phys. Lett. B, 633:2–3 (2006), 260–264, arXiv: ; D. E. Kharzeev, L. D. McLerran, H. J. Warringa, Nucl. Phys. A, 803:3 (2008), 227–253, arXiv: hep-ph/9804221hep-ph/9910229hep-ph/04061250711.0950 | DOI | DOI | DOI | DOI

[20] P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov, Phys. Rev. D, 80:5 (2009), 054503, 14 pp., arXiv: 0907.0494 | DOI

[21] B. I. Abelev, M. M. Aggarwal, Z. Ahammed et al. [STAR Collab.], Phys. Rev. Lett., 103:25 (2009), 251601, 7 pp., arXiv: ; S. A. Voloshin, J. Phys. Conf. Ser., 230:1 (2010), 012021, 8 pp., arXiv: 0909.17391003.1127 | DOI | DOI | MR

[22] A. Gorsky, M. B. Voloshin, Phys. Rev. D, 82:8 (2010), 086008, 6 pp., arXiv: 1006.5423 | DOI

[23] J. Alfaro, A. A. Andrianov, M. Cambiaso, P. Giacconi, R. Soldati, Internat. J. Modern Phys. A, 25:16 (2010), 3271–3306 ; Phys. Lett. B, 639:5 (2006), 586–590, arXiv: hep-th/0604164 | DOI | Zbl | DOI | MR

[24] A. A. Andrianov, S. S. Kolevatov, R. Soldati, JHEP, 11 (2011), 007, 27 pp., arXiv: 1109.3440 | DOI | Zbl

[25] A. A. Andrianov, P. Giacconi, R. Soldati, JHEP, 02 (2002), 030, 25 pp., arXiv: hep-th/0110279 | DOI

[26] A. A. Andrianov, S. S. Kolevatov, TMF, 175:3 (2013), 357–369, arXiv: ; S. S. Kolevatov, A. A. Andrianov, AIP Conf. Proc., 1606:1 (2014), 243–255 1212.5723 | DOI | DOI | MR | Zbl | DOI

[27] A. A. Andrianov, D. Espriu, S. S. Kolevatov, Effects of pseudoscalar condensation on the cooling of neutron stars, arXiv: 1501.03484