$SU(4)$ harmonic superspace and supersymmetric gauge theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 2, pp. 269-289 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the harmonic superspace formalism in $N=4$ supersymmetry based on $SU(4)/SU(2)\times SU(2)\times U(1)$ harmonics, which was previously used in Abelian gauge theory. We propose a transformation of non-Abelian constraints in the standard $N{=}4$ superspace into a superfield equation for two basic analytic superfields: an independent strength $W$ of dimension one and a dimensionless harmonic four-prepotential $V$ of the $U(1)$ charge two. These constraint equations I explicitly depend on the Grassmann coordinates $\theta$, although they are covariant under nonstandard $N=4$ supersymmetry transformations. The component expansion of superfield equations I generates the known equations for physical fields of the $N=4$ supermultiplet, with the auxiliary fields vanishing or expressible in terms of physical fields on the mass shell. In the harmonic formalism of $N=4$ supergauge theory off the mass shell, we construct a gauge-invariant action $A(W,V)$ for two unconstrained non-Abelian analytic superfields $W$ and $V$; this action contains theta factors in each term and is invariant under the $SU(4)$ automorphism group and scaling transformations. At the level of component fields, this model acquires an interaction of two infinite-dimensional $N=4$ supermultiplets involving physical and auxiliary fields. The action $A(W,V)$ generates analytic equations of motion II, alternative to the superfield constraints I. Both sets of equations give equivalent equations for physical component fields of the $N=4$ gauge supermultiplet. We construct a nonlinear effective interaction for the Abelian harmonic superfield $W$.
Keywords: harmonic superspace, extended supersymmetry, Yang–Mills theory.
@article{TMF_2015_184_2_a5,
     author = {B. M. Zupnik},
     title = {$SU(4)$ harmonic superspace and supersymmetric gauge theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--289},
     year = {2015},
     volume = {184},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a5/}
}
TY  - JOUR
AU  - B. M. Zupnik
TI  - $SU(4)$ harmonic superspace and supersymmetric gauge theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 269
EP  - 289
VL  - 184
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a5/
LA  - ru
ID  - TMF_2015_184_2_a5
ER  - 
%0 Journal Article
%A B. M. Zupnik
%T $SU(4)$ harmonic superspace and supersymmetric gauge theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 269-289
%V 184
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a5/
%G ru
%F TMF_2015_184_2_a5
B. M. Zupnik. $SU(4)$ harmonic superspace and supersymmetric gauge theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 2, pp. 269-289. http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a5/

[1] M. F. Sohnius, Nucl. Phys. B, 136:3 (1978), 461–474 | DOI | MR

[2] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[3] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Class. Quant. Grav., 2:2 (1985), 155–166 | DOI | MR | Zbl

[4] A. S. Galperin, E. A. Ivanov, V. I. Ogievetskii, YaF, 46:3 (1987), 948–960 | MR

[5] F. Delduc, J. McCabe, Class. Quant. Grav., 6:3 (1989), 233–254 | DOI | MR | Zbl

[6] E. A. Ivanov, B. M. Zupnik, Nucl. Phys. B, 618:1–2 (2001), 3–20, arXiv: hep-th/0110074 | DOI | MR | Zbl

[7] B. M. Zupnik, TMF, 140:2 (2004), 269–283, arXiv: hep-th/0308204 | DOI | DOI | MR | Zbl

[8] I. L. Buchbinder, E. A. Ivanov, I. B. Samsonov, B. M. Zupnik, Nucl. Phys. B, 689:1–2 (2004), 91–107, arXiv: ; JHEP, 01 (2012), 001, 29 pp., arXiv: hep-th/04030531111.4145 | DOI | MR | Zbl | DOI | MR

[9] E. Ivanov, S. Kalitzin, Nguen Ai Viet, V. Ogievetsky, J. Phys. A, 18:17 (1985), 3433–3443 | DOI | MR

[10] E. Sokatchev, Phys. Lett. B, 217:4 (1989), 489–495 | DOI | MR

[11] E. Witten, Phys. Lett. B, 77:4–5 (1978), 394–398 | DOI

[12] G. G. Hartwell, P. S. Howe, Internat. J. Modern Phys. A, 10:27 (1995), 3901–3919, arXiv: hep-th/9412147 | DOI | MR | Zbl

[13] P. S. Howe, P. C. West, Phys. Lett. B, 400:3–4 (1997), 307–313, arXiv: hep-th/9611075 | DOI | MR

[14] P. S. Howe, “On harmonic superspace”, Supersymmetries and Quantum Symmetries (Dubna, Russia, 22–26 July 1997), Lecture Notes in Physics, 524, eds. J. Wess, E. A. Ivanov, Springer, Berlin, 1999, 68–78, arXiv: hep-th/9812133 | DOI | MR

[15] L. Andrianopoli, S. Ferrara, E. Sokatchev, B. Zupnik, Adv. Theor. Math. Phys., 3:4 (2000), 1149–1197, arXiv: hep-th/9912007 | DOI | MR

[16] I. Antoniadis, S. Hohengger, K. S. Narain, E. S. Sokatchev, Nucl. Phys. B, 794:1–2 (2008), 348–380, arXiv: 0708.0482 | DOI | MR | Zbl

[17] I. L. Buchbinder, O. Lechtenfeld, I. B. Samsonov, Nucl. Phys. B, 802:1–2 (2008), 208–246, arXiv: 0804.3063 | DOI | MR | Zbl

[18] D. V. Belyaev, I. B. Samsonov, JHEP, 04 (2011), 112, 26 pp., arXiv: 1103.5070 | DOI | MR

[19] I. L. Buchbinder, N. G. Pletnev, Nucl. Phys. B, 877:3 (2013), 936–955, arXiv: 1307.6300 | DOI | MR | Zbl