Keywords: perturbed mKdV equation, two-soliton solution, two-periodic solution.
@article{TMF_2015_184_2_a3,
author = {Ying Huang and Lin Liang},
title = {Exact two-soliton solutions and two-periodic solutions for the perturbed {mKdV} equation with variable coefficients},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {244--252},
year = {2015},
volume = {184},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a3/}
}
TY - JOUR AU - Ying Huang AU - Lin Liang TI - Exact two-soliton solutions and two-periodic solutions for the perturbed mKdV equation with variable coefficients JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2015 SP - 244 EP - 252 VL - 184 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a3/ LA - ru ID - TMF_2015_184_2_a3 ER -
%0 Journal Article %A Ying Huang %A Lin Liang %T Exact two-soliton solutions and two-periodic solutions for the perturbed mKdV equation with variable coefficients %J Teoretičeskaâ i matematičeskaâ fizika %D 2015 %P 244-252 %V 184 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a3/ %G ru %F TMF_2015_184_2_a3
Ying Huang; Lin Liang. Exact two-soliton solutions and two-periodic solutions for the perturbed mKdV equation with variable coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 2, pp. 244-252. http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a3/
[1] R. Hirota, J. Phys. Soc. Japan, 33:5 (1972), 1456–1458 | DOI | MR
[2] Y. Huang, Nonlinear Dynam., 77:3 (2014), 437–444 | DOI | MR | Zbl
[3] Y. S. Kivshar, B. A. Malomed, Rev. Modern Phys., 61:4 (1989), 763–915 | DOI
[4] J. Mason, E. Knobloch, Phys. D, 205:1–4 (2005), 100–124 | DOI | MR | Zbl
[5] J. L. Hu, X. Feng, Z. Li, Commun. Nonlinear Sci. Numer. Simul., 5:3 (2000), 118–124 | DOI | MR | Zbl
[6] H. Triki, A.-M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul., 19:3 (2014), 404–408 | DOI | MR
[7] H. Liu, J. Li, L. Liu, J. Math. Anal. Appl., 368:2 (2010), 551–558 | DOI | MR | Zbl
[8] A. H. Khater, M. M. Hassan, R. S. Temsah, Math. Comput. Simul., 70:4 (2005), 221–226 | DOI | MR | Zbl
[9] S. Bilige, T. Chaolu, Appl. Math. Comput., 216:11 (2010), 3146–3153 | DOI | MR | Zbl
[10] A.-M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul., 12:6 (2007), 904–909 | DOI | MR | Zbl
[11] A.-M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul., 12:7 (2007), 1172–1180 | DOI | MR | Zbl
[12] A.-M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul., 15:11 (2010), 3270–3273 | DOI | MR | Zbl
[13] Y. Zarmi, Phys. D, 237:23 (2008), 2987–3007 | DOI | MR | Zbl
[14] A. Veksler, Y. Zarmi, Phys. D, 217:1 (2006), 77–87, arXiv: nlin/0505042 | DOI | MR | Zbl
[15] X. Jiao, H.-Q. Zhang, Appl. Math. Comput., 172:1 (2006), 664–677 | DOI | MR | Zbl
[16] J. Yu, W. Zhang, X. Gao, Chaos Solitons Fractals, 33:4 (2007), 1307–1313 | DOI | MR | Zbl
[17] X. Jiao, Y. Zheng, B. Wu, Appl. Math. Comput., 218:17 (2012), 8486–8491 | DOI | MR | Zbl
[18] C. Gu, H. Hu, Z. Zhou, “Darboux transformation”, Soliton Theory and its Applications On Geometry, Shanghai Scientific and Technical Publishers, Shanghai, 2005, 5–46