Difference Schrödinger equation and quasisymmetric polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 2, pp. 200-211
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the singularity of solutions of the Schrödinger equation with a finite potential at the point $k=0$. In the case of delta-type potentials, we show that the nature of this singularity is automodel in a certain sense. We discuss using the obtained results to construct an approximate solution of the inverse scattering problem on the whole axis. For this, we introduce the concept of a quasisymmetric polynomial associated with a given curve.
Keywords:
Schrödinger operator, Green's function, additional spectrum, difference model.
@article{TMF_2015_184_2_a1,
author = {A. B. Shabat},
title = {Difference {Schr\"odinger} equation and quasisymmetric polynomials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {200--211},
year = {2015},
volume = {184},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a1/}
}
A. B. Shabat. Difference Schrödinger equation and quasisymmetric polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 2, pp. 200-211. http://geodesic.mathdoc.fr/item/TMF_2015_184_2_a1/
[1] A. B. Shabat, TMF, 183:1 (2015), 105–119 | DOI | MR | Zbl
[2] B. Levin, Lectures on Entire Functions, AMS, New York, 1996 | MR | Zbl
[3] A. Povzner, Matem. sb., 23(65):1 (1948), 3–52 | MR | Zbl
[4] A. B. Shabat, Funkts. analiz i ego pril., 9:3 (1975), 75–78 | DOI | MR
[5] M. Sh. Badakhov, O. Yu. Veremeenko, A. B. Shabat, Vladikavk. matem. zhurn., 16:4 (2014), 34–40 | MR
[6] A. B. Shabat, TMF, 179:3 (2014), 303–316 | DOI | MR | Zbl
[7] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1(187) (1976), 55–136 | MR | Zbl
[8] E. Korotyaev, Inverse Problems, 21:1 (2005), 325–341 | DOI | MR | Zbl