Solutions of the sine-Gordon equation with a variable amplitude
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 79-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose methods for constructing functionally invariant solutions $u(x,y,z,t)$ of the sine-Gordon equation with a variable amplitude in $3{+}1$ dimensions. We find solutions $u(x,y,z,t)$ in the form of arbitrary functions depending on either one $(\alpha(x,y,z,t))$ or two $(\alpha(x,y,z,t),\beta(x,y,z,t))$ specially constructed functions. Solutions $f(\alpha)$ and $f(\alpha,\beta)$ relate to the class of functionally invariant solutions, and the functions $\alpha(x,y,z,t)$ and $\beta(x,y,z,t)$ are called the ansatzes. The ansatzes $(\alpha,\beta)$ are defined as the roots of either algebraic or mixed (algebraic and first-order partial differential) equations. The equations defining the ansatzes also contain arbitrary functions depending on $(\alpha,\beta)$. The proposed methods allow finding $u(x,y,z,t)$ for a particular, but wide, class of both regular and singular amplitudes and can be easily generalized to the case of a space with any number of dimensions.
Mots-clés : sine-Gordon equation, eikonal equation, ansatz.
Keywords: wave equation, functionally invariant solution
@article{TMF_2015_184_1_a4,
     author = {E. L. Aero and A. N. Bulygin and Yu. V. Pavlov},
     title = {Solutions of {the~sine-Gordon} equation with a~variable amplitude},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {79--91},
     year = {2015},
     volume = {184},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a4/}
}
TY  - JOUR
AU  - E. L. Aero
AU  - A. N. Bulygin
AU  - Yu. V. Pavlov
TI  - Solutions of the sine-Gordon equation with a variable amplitude
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 79
EP  - 91
VL  - 184
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a4/
LA  - ru
ID  - TMF_2015_184_1_a4
ER  - 
%0 Journal Article
%A E. L. Aero
%A A. N. Bulygin
%A Yu. V. Pavlov
%T Solutions of the sine-Gordon equation with a variable amplitude
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 79-91
%V 184
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a4/
%G ru
%F TMF_2015_184_1_a4
E. L. Aero; A. N. Bulygin; Yu. V. Pavlov. Solutions of the sine-Gordon equation with a variable amplitude. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 79-91. http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a4/

[1] J. Frenkel, T. Kontorova, Acad. Sci. U.S.S.R. J. Phys., 1 (1939), 137–149 | MR | Zbl

[2] E. L. Aero, A. N. Bulygin, Izv. RAN. Cep. Mekhanika tverdogo tela, 2007, no. 5, 170–187

[3] P. Guéret, IEEE Trans. Magnetics, 11:2 (1975), 751–754 | DOI

[4] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR | Zbl

[5] P. Zh. de Zhen, Fizika zhidkikh kristallov, Mir, M., 1977

[6] K. Longren, E. Skott, Solitony v deistvii, Mir, M., 1981 | MR

[7] W. L. McMillan, Phys. Rev. B, 14:4 (1976), 1496–1502 | DOI

[8] V. G. Bykov, Nelineinye volnovye protsessy v geologicheskikh sredakh, Dalnauka, Vladivostok, 2000

[9] P. L. Chebyshev, UMN, 1:2(12) (1946), 38–42 | MR | Zbl

[10] A. S. Davydov, Solitony v bioenergetike, Naukova dumka, Kiev, 1986 | MR

[11] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[12] L. A. Takhtadzhyan, L. D. Faddeev, TMF, 21:2 (1974), 160–174 | DOI | Zbl

[13] I. A. Garagash, V. N. Nikolaevskii, Vychisl. mekh. sploshnykh sred, 2:4 (2009), 44–66 | DOI

[14] G. Beitmen, Matematicheskaya teoriya rasprostraneniya elektromagnitnykh voln, Nauka, M., 1958

[15] A. R. Forsyth, Messenger Math., 27 (1898), 99–118

[16] V. Smirnoff, S. Soboleff, “Sur une méthode nouvelle dans le problème plan des vibrations élastiques”, Trudy seismologicheskogo in-ta, No 20, Izd-vo AN SSSR, L., 1932

[17] V. Smirnoff, S. Soboleff, C. R. Acad. Sci. Paris, 194 (1932), 1437–1439 | Zbl

[18] S. L. Sobolev, “Funktsionalno-invariantnye resheniya volnovogo uravneniya”, Tr. Fiz.-matem. in-ta im. V. A. Steklova, 5, Izd-vo AN SSSR, L., 1934, 259–264 | Zbl

[19] S. L. Sobolev, Izbrannye trudy, v. I, Uravneniya matematicheskoi fiziki. Vychislitelnaya matematika i kubaturnye formuly, Izd-vo in-ta matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 2003 ; т. II, Функциональный анализ. Дифференциальные уравнения с частными производными, Изд-во ин-та математики им. С. Л. Соболева СО РАН, Новосибирск, 2006 | MR | Zbl

[20] N. P. Erugin, Uchenye zap. Leningr. un-ta, 15 (1948), 101–134

[21] M. M. Smirnov, Dokl. AN SSSR, 67 (1949), 977–980 | MR | Zbl

[22] E. L. Aero, A. N. Bulygin, Yu. V. Pavlov, TMF, 158:3 (2009), 370–377 | DOI | DOI | MR | Zbl

[23] E. L. Aero, A. N. Bulygin, Yu. V. Pavlov, Nelineinyi mir, 7:7 (2009), 513–517

[24] E. L. Aero, A. N. Bulygin, Yu. V. Pavlov, Differents. uravneniya, 47:10 (2011), 1428–1438 | MR | Zbl

[25] E. L. Aero, A. N. Bulygin, Yu. V. Pavlov, Appl. Math. Comput., 223 (2013), 160–166 | DOI | MR | Zbl

[26] C. G. J. Jacobi, J. Reine Angew. Math., 36 (1848), 113–134 ; “Über eine particuläre Lösung der partiellen Differentialgleichung $\frac{\partial^2V}{\partial x^2}+ \frac{\partial^2 V}{\partial y^2\vphantom{a_P}}+\frac{\partial^2V}{\partial z^2}$”, C. G. J. Jacobi's Gesammelte Werke, 2, ред. C. G. J. Jacobi, C. W. Borchardt, Verlag von G. Reimer, Berlin, 1882, 191–216 | DOI | MR | Zbl