Algebraic quantum Hamiltonians on the plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 57-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider second-order differential operators $P$ with polynomial coefficients that preserve the vector space $V_n$ of polynomials of degrees not greater than $n$. We assume that the metric associated with the symbol of $P$ is flat and that $P$ is a potential operator. In the case of two independent variables, we obtain some classification results and find polynomial forms for the elliptic $A_2$ and $G_2$ Calogero–Moser Hamiltonians and for the elliptic Inozemtsev model.
Keywords: differential operator with polynomial coefficients, polynomial form of Calogero–Moser operators.
Mots-clés : classification
@article{TMF_2015_184_1_a2,
     author = {V. V. Sokolov},
     title = {Algebraic quantum {Hamiltonians} on the~plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {57--70},
     year = {2015},
     volume = {184},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a2/}
}
TY  - JOUR
AU  - V. V. Sokolov
TI  - Algebraic quantum Hamiltonians on the plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 57
EP  - 70
VL  - 184
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a2/
LA  - ru
ID  - TMF_2015_184_1_a2
ER  - 
%0 Journal Article
%A V. V. Sokolov
%T Algebraic quantum Hamiltonians on the plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 57-70
%V 184
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a2/
%G ru
%F TMF_2015_184_1_a2
V. V. Sokolov. Algebraic quantum Hamiltonians on the plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 57-70. http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a2/

[1] V. V. Sokolov, A. V. Turbiner, J. Phys. A: Math. Theor., 48:15, 155201, arXiv: 1409.7439 | DOI | MR | Zbl

[2] W. Rühl, A. V. Turbiner, Modern Phys. Lett. A, 10:29 (1995), 2213–2221 | DOI | MR

[3] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR

[4] G. Darboux, C. R. Acad. Sci. Paris, XCIV:25 (1882), 1645–1648 | Zbl

[5] K. Takemura, J. Phys. A: Math. Gen., 35:41 (2002), 8867–8881 | DOI | MR | Zbl

[6] A. V. Turbiner, Commun. Math. Phys., 118:3 (1988), 467–474 | DOI | MR | Zbl

[7] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[8] A. V. Turbiner, “Lie-algebras and linear operators with invariant subspaces”, Lie Algebras, Cohomologies, and New Findings in Quantum Mechanics (Southwest Missouri State University, Springfield, MO, USA, March 20–21, 1992), Contemporary Mathematics, 160, eds. N. Kamran, P. J. Olver, AMS, Providence, RI, 1994, 263–310 | DOI | MR | Zbl

[9] A. P. Veselov, Lett. Math. Phys., 96:1–3 (2011), 209–216, arXiv: 1004.5355 | DOI | MR | Zbl

[10] V. I. Inozemtsev, Lett. Math. Phys., 17:1 (1989), 11–17 | DOI | MR | Zbl