Mots-clés : classification
@article{TMF_2015_184_1_a2,
author = {V. V. Sokolov},
title = {Algebraic quantum {Hamiltonians} on the~plane},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {57--70},
year = {2015},
volume = {184},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a2/}
}
V. V. Sokolov. Algebraic quantum Hamiltonians on the plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 57-70. http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a2/
[1] V. V. Sokolov, A. V. Turbiner, J. Phys. A: Math. Theor., 48:15, 155201, arXiv: 1409.7439 | DOI | MR | Zbl
[2] W. Rühl, A. V. Turbiner, Modern Phys. Lett. A, 10:29 (1995), 2213–2221 | DOI | MR
[3] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR
[4] G. Darboux, C. R. Acad. Sci. Paris, XCIV:25 (1882), 1645–1648 | Zbl
[5] K. Takemura, J. Phys. A: Math. Gen., 35:41 (2002), 8867–8881 | DOI | MR | Zbl
[6] A. V. Turbiner, Commun. Math. Phys., 118:3 (1988), 467–474 | DOI | MR | Zbl
[7] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[8] A. V. Turbiner, “Lie-algebras and linear operators with invariant subspaces”, Lie Algebras, Cohomologies, and New Findings in Quantum Mechanics (Southwest Missouri State University, Springfield, MO, USA, March 20–21, 1992), Contemporary Mathematics, 160, eds. N. Kamran, P. J. Olver, AMS, Providence, RI, 1994, 263–310 | DOI | MR | Zbl
[9] A. P. Veselov, Lett. Math. Phys., 96:1–3 (2011), 209–216, arXiv: 1004.5355 | DOI | MR | Zbl
[10] V. I. Inozemtsev, Lett. Math. Phys., 17:1 (1989), 11–17 | DOI | MR | Zbl