Algebraic quantum Hamiltonians on the~plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 57-70
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider second-order differential operators $P$ with polynomial coefficients that preserve the vector space $V_n$ of polynomials of degrees not greater than $n$. We assume that the metric associated with the symbol of $P$ is flat and that $P$ is a potential operator. In the case of two independent variables, we obtain some classification results and find polynomial forms for the elliptic $A_2$ and $G_2$ Calogero–Moser Hamiltonians and for the elliptic Inozemtsev model.
Keywords:
differential operator with polynomial coefficients, polynomial form of Calogero–Moser operators.
Mots-clés : classification
Mots-clés : classification
@article{TMF_2015_184_1_a2,
author = {V. V. Sokolov},
title = {Algebraic quantum {Hamiltonians} on the~plane},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {57--70},
publisher = {mathdoc},
volume = {184},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a2/}
}
V. V. Sokolov. Algebraic quantum Hamiltonians on the~plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 57-70. http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a2/