Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 41-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum elliptic $R$-matrices satisfy the associative Yang–Baxter equation in $\mathrm{Mat}(N)^{\otimes 2}$, which can be regarded as a noncommutative analogue of the Fay identity for the scalar Kronecker function. We present a broader list of $R$-matrix-valued identities for elliptic functions. In particular, we propose an analogue of the Fay identities in $\mathrm{Mat}(N)^{\otimes 2}$. As an application, we use the $\mathbb{Z}_N\times\mathbb{Z}_N$ elliptic $R$-matrix to construct $R$-matrix-valued $2N^2\times 2N^2$ Lax pairs for the Painlevé VI equation {(}in the elliptic form{\rm)} with four free constants. More precisely, the case with four free constants corresponds to odd $N$, and even $N$ corresponds to the case with a single constant in the equation.
Mots-clés : quantum $R$-matrix, multidimensional Lax pair, Painlevé equation.
@article{TMF_2015_184_1_a1,
     author = {A. M. Levin and M. A. Olshanetsky and A. V. Zotov},
     title = {Quantum {Baxter{\textendash}Belavin} $R$-matrices and multidimensional {Lax} pairs for {Painlev\'e~VI}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--56},
     year = {2015},
     volume = {184},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a1/}
}
TY  - JOUR
AU  - A. M. Levin
AU  - M. A. Olshanetsky
AU  - A. V. Zotov
TI  - Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 41
EP  - 56
VL  - 184
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a1/
LA  - ru
ID  - TMF_2015_184_1_a1
ER  - 
%0 Journal Article
%A A. M. Levin
%A M. A. Olshanetsky
%A A. V. Zotov
%T Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 41-56
%V 184
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a1/
%G ru
%F TMF_2015_184_1_a1
A. M. Levin; M. A. Olshanetsky; A. V. Zotov. Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 41-56. http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a1/

[1] A. Levin, M. Olshanetsky, A. Zotov, JHEP, 10 (2014), 109, 29 pp., arXiv: 1408.6246 | DOI | MR | Zbl

[2] A. Polischuk, Adv. Math., 168:1 (2002), 56–95 | DOI | MR | Zbl

[3] R. J. Baxter, Ann. Phys., 70 (1972), 193–228 | DOI | MR | Zbl

[4] A. A. Belavin, Nucl. Phys. B, 180:2 (1981), 189–200 ; А. А. Белавин, В. Г. Дринфельд, Функц. анализ и его прил., 16:3 (1982), 1–29 | DOI | MR | Zbl | DOI | MR | Zbl

[5] M. P. Richey, C. A. Tracy, J. Statist. Phys., 42:3–4 (1986), 311–348 ; K. Hasegawa, J. Math. Phys., 35:11 (1994), 6158–6171 | DOI | MR | DOI | MR | Zbl

[6] V. V. Bazhanov, Y. G. Stroganov, “On connection between the solutions of the quantum and classical triangle equations”, Problemy fiziki vysokikh energii i kvantovoi teorii polya, 1, In-t fiziki vysokikh energii, Protvino, 1983, 52–54

[7] L. A. Takhtadzhyan, Zap. nauchn. sem. LOMI, 133 (1984), 258–276 | MR | Zbl

[8] A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, 88, Springer, Berlin, New York, 1976 | MR | Zbl

[9] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | DOI | MR | MR | Zbl

[10] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, 352, Springer, Berlin, 1973 | DOI | MR | Zbl

[11] A. Levin, M. Olshanetsky, A. Zotov, JHEP, 07 (2014), 012, 38 pp., arXiv: 1405.7523 | DOI | MR

[12] M. Aguiar, “Infinitesimal Hopf algebras”, New Trends in Hopf Algebra Theory (La Falda, Sierras de Córdoba, Argentina, August 9–13, 1999), Contemporary Mathematics, 267, eds. N. Andruskiewitsch, W. R. Ferrer Santos, H.-J. Schneider, AMS, Providence, RI, 2000, 1–29 | DOI | MR | Zbl

[13] P. Painlevé, C. R. Acad. Sci. Paris, 143 (1906), 1111–1117 ; Yu. Manin, “Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbb{P}^2$”, Geometry of Differential Equations, Translations American Mathematical Society. Ser. 2, 186, Advances in the Mathematical Sciences, 39, eds. A. Khovanskij, A. Varchenko, V. Vassiliev, AMS, Providence, RI, 1998, 131–151 | Zbl | MR | Zbl

[14] A. Zotov, Lett. Math. Phys., 67:2 (2004), 153–165, arXiv: hep-th/0310260 | DOI | MR | Zbl

[15] M. Jimbo, T. Miwa, Phys. D, 2:3 (1981), 407–448 ; N. Joshi, A. Kitaev, P. Treharne, J. Math. Phys., 48:10 (2007), 103512, 42 pp., arXiv: ; M. Noumi, Y. Yamada, “A new Lax pair for the sixth Painlevé equation associated with $\widehat{so}(8)$”, Microlocal Analysis and Complex Fourier Analysis, eds. T. Kawai, K. Fujita, World Sci., Singapore, 2002, 238–252, arXiv: ; G. Aminov, S. Arthamonov, New $2\times 2$-matrix linear problems for Painlevé equations, arXiv: 0706.1750math-ph/02030291112.4688 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[16] B. Dubrovin, M. Mazzocco, Invent. Math., 141:1 (2000), 55–147, arXiv: ; P. Boalch, Proc. London Math. Soc. (3), 90:1 (2005), 167–208 math/9806056 | DOI | MR | Zbl | DOI | MR | Zbl

[17] A. Levin, M. Olshanetsky, “Painlevé–Calogero correspondence”, Calogero–Moser–Sutherland Models (Montréal, QC, 1997), CRM Series in Mathematical Physics, eds. J. F. van Diejen, L. Vinet, Springer, New York, 2000, 313–332, arXiv: ; A. Levin, M. Olshanetsky, A. Zotov, Commun. Math. Phys., 268:1 (2006), 67–103, arXiv: ; A. Levin, A. Zotov, “On rational and elliptic forms of Painlevé VI equation”, Moscow Seminar on Mathematical Physics. II, Translations American Mathematical Society. Ser. 2, 221, Advances in the Mathematical Sciences, 60, eds. Yu. Neretin, M. A. Olshanetsky, A. Rosly, AMS, Providence, RI, 2007, 173–184 ; A. Zabrodin, A. Zotov, J. Math. Phys., 53:7 (2012), 073507, 19 pp., arXiv: ; 073508, 19 pp. ; Construct. Approx., 41:3 (2015), 385–423, arXiv: ; А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, УМН, 69:1(415) (2014), 39–124, arXiv: alg-geom/9706010math/05080581107.56721212.58131311.4498 | MR | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | MR | Zbl