@article{TMF_2015_184_1_a1,
author = {A. M. Levin and M. A. Olshanetsky and A. V. Zotov},
title = {Quantum {Baxter{\textendash}Belavin} $R$-matrices and multidimensional {Lax} pairs for {Painlev\'e~VI}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {41--56},
year = {2015},
volume = {184},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a1/}
}
TY - JOUR AU - A. M. Levin AU - M. A. Olshanetsky AU - A. V. Zotov TI - Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2015 SP - 41 EP - 56 VL - 184 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a1/ LA - ru ID - TMF_2015_184_1_a1 ER -
%0 Journal Article %A A. M. Levin %A M. A. Olshanetsky %A A. V. Zotov %T Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI %J Teoretičeskaâ i matematičeskaâ fizika %D 2015 %P 41-56 %V 184 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a1/ %G ru %F TMF_2015_184_1_a1
A. M. Levin; M. A. Olshanetsky; A. V. Zotov. Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 41-56. http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a1/
[1] A. Levin, M. Olshanetsky, A. Zotov, JHEP, 10 (2014), 109, 29 pp., arXiv: 1408.6246 | DOI | MR | Zbl
[2] A. Polischuk, Adv. Math., 168:1 (2002), 56–95 | DOI | MR | Zbl
[3] R. J. Baxter, Ann. Phys., 70 (1972), 193–228 | DOI | MR | Zbl
[4] A. A. Belavin, Nucl. Phys. B, 180:2 (1981), 189–200 ; А. А. Белавин, В. Г. Дринфельд, Функц. анализ и его прил., 16:3 (1982), 1–29 | DOI | MR | Zbl | DOI | MR | Zbl
[5] M. P. Richey, C. A. Tracy, J. Statist. Phys., 42:3–4 (1986), 311–348 ; K. Hasegawa, J. Math. Phys., 35:11 (1994), 6158–6171 | DOI | MR | DOI | MR | Zbl
[6] V. V. Bazhanov, Y. G. Stroganov, “On connection between the solutions of the quantum and classical triangle equations”, Problemy fiziki vysokikh energii i kvantovoi teorii polya, 1, In-t fiziki vysokikh energii, Protvino, 1983, 52–54
[7] L. A. Takhtadzhyan, Zap. nauchn. sem. LOMI, 133 (1984), 258–276 | MR | Zbl
[8] A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, 88, Springer, Berlin, New York, 1976 | MR | Zbl
[9] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | DOI | MR | MR | Zbl
[10] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, 352, Springer, Berlin, 1973 | DOI | MR | Zbl
[11] A. Levin, M. Olshanetsky, A. Zotov, JHEP, 07 (2014), 012, 38 pp., arXiv: 1405.7523 | DOI | MR
[12] M. Aguiar, “Infinitesimal Hopf algebras”, New Trends in Hopf Algebra Theory (La Falda, Sierras de Córdoba, Argentina, August 9–13, 1999), Contemporary Mathematics, 267, eds. N. Andruskiewitsch, W. R. Ferrer Santos, H.-J. Schneider, AMS, Providence, RI, 2000, 1–29 | DOI | MR | Zbl
[13] P. Painlevé, C. R. Acad. Sci. Paris, 143 (1906), 1111–1117 ; Yu. Manin, “Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbb{P}^2$”, Geometry of Differential Equations, Translations American Mathematical Society. Ser. 2, 186, Advances in the Mathematical Sciences, 39, eds. A. Khovanskij, A. Varchenko, V. Vassiliev, AMS, Providence, RI, 1998, 131–151 | Zbl | MR | Zbl
[14] A. Zotov, Lett. Math. Phys., 67:2 (2004), 153–165, arXiv: hep-th/0310260 | DOI | MR | Zbl
[15] M. Jimbo, T. Miwa, Phys. D, 2:3 (1981), 407–448 ; N. Joshi, A. Kitaev, P. Treharne, J. Math. Phys., 48:10 (2007), 103512, 42 pp., arXiv: ; M. Noumi, Y. Yamada, “A new Lax pair for the sixth Painlevé equation associated with $\widehat{so}(8)$”, Microlocal Analysis and Complex Fourier Analysis, eds. T. Kawai, K. Fujita, World Sci., Singapore, 2002, 238–252, arXiv: ; G. Aminov, S. Arthamonov, New $2\times 2$-matrix linear problems for Painlevé equations, arXiv: 0706.1750math-ph/02030291112.4688 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[16] B. Dubrovin, M. Mazzocco, Invent. Math., 141:1 (2000), 55–147, arXiv: ; P. Boalch, Proc. London Math. Soc. (3), 90:1 (2005), 167–208 math/9806056 | DOI | MR | Zbl | DOI | MR | Zbl
[17] A. Levin, M. Olshanetsky, “Painlevé–Calogero correspondence”, Calogero–Moser–Sutherland Models (Montréal, QC, 1997), CRM Series in Mathematical Physics, eds. J. F. van Diejen, L. Vinet, Springer, New York, 2000, 313–332, arXiv: ; A. Levin, M. Olshanetsky, A. Zotov, Commun. Math. Phys., 268:1 (2006), 67–103, arXiv: ; A. Levin, A. Zotov, “On rational and elliptic forms of Painlevé VI equation”, Moscow Seminar on Mathematical Physics. II, Translations American Mathematical Society. Ser. 2, 221, Advances in the Mathematical Sciences, 60, eds. Yu. Neretin, M. A. Olshanetsky, A. Rosly, AMS, Providence, RI, 2007, 173–184 ; A. Zabrodin, A. Zotov, J. Math. Phys., 53:7 (2012), 073507, 19 pp., arXiv: ; 073508, 19 pp. ; Construct. Approx., 41:3 (2015), 385–423, arXiv: ; А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, УМН, 69:1(415) (2014), 39–124, arXiv: alg-geom/9706010math/05080581107.56721212.58131311.4498 | MR | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | MR | Zbl