Matching branches of a nonperturbative conformal block at its singularity divisor
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 3-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A conformal block is a function of many variables, usually represented as a formal series with coefficients that are certain matrix elements in the chiral {(}i.e., Virasoro{\rm)} algebra. A nonperturbative conformal block is a multivalued function defined globally over the space of dimensions and has many branches and, perhaps, additional free parameters not seen at the perturbative level. We discuss additional complications of the nonperturbative description that arise because all the best-studied examples of conformal blocks are at the singularity locus in the moduli space {\rm(}at divisors of the coefficients or, simply, at zeros of the Kac determinant{\rm).} A typical example is the Ashkin–Teller point, where at least two naive nonperturbative expressions are provided by the elliptic Dotsenko–Fateev integral and by the celebrated Zamolodchikov formula in terms of theta constants, and they differ. The situation is somewhat similar at the Ising and other minimal model points.
Keywords: two-dimensional conformal theory, conformal block.
@article{TMF_2015_184_1_a0,
     author = {H. Itoyama and A. D. Mironov and A. Yu. Morozov},
     title = {Matching branches of a~nonperturbative conformal block at its singularity divisor},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--40},
     year = {2015},
     volume = {184},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a0/}
}
TY  - JOUR
AU  - H. Itoyama
AU  - A. D. Mironov
AU  - A. Yu. Morozov
TI  - Matching branches of a nonperturbative conformal block at its singularity divisor
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 3
EP  - 40
VL  - 184
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a0/
LA  - ru
ID  - TMF_2015_184_1_a0
ER  - 
%0 Journal Article
%A H. Itoyama
%A A. D. Mironov
%A A. Yu. Morozov
%T Matching branches of a nonperturbative conformal block at its singularity divisor
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 3-40
%V 184
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a0/
%G ru
%F TMF_2015_184_1_a0
H. Itoyama; A. D. Mironov; A. Yu. Morozov. Matching branches of a nonperturbative conformal block at its singularity divisor. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 1, pp. 3-40. http://geodesic.mathdoc.fr/item/TMF_2015_184_1_a0/

[1] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 ; А. Б. Замолодчиков, Ал. Б. Замолодчиков, Конформная теория поля и критические явления в двумерных системах, МНЦМО, 2009 ; L. Alvarez-Gaumé, Helv. Phys. Acta, 64:4 (1991), 359–626 ; P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer, New York, 1997 | DOI | MR | Zbl | MR | MR | DOI | MR | Zbl

[2] M. Sato, RIMS. Kokyuroku, 439 (1981), 30–46, Kyoto Univ., RIMS ; E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 ; M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci., Kyoto Univ., 19:3 (1983), 943–1001 | Zbl | Zbl | MR | DOI | MR | Zbl

[3] J. Wess, B. Zumino, Phys. Lett. B, 37:1 (1971), 95–97 ; E. Witten, Nucl. Phys. B, 223:2 (1983), 422–421 ; Commun. Math. Phys., 92:4 (1984), 455–472 ; С. П. Новиков, Докл. АН СССР, 260 (1981), 31–35 ; УМН, 37:5(227) (1982), 3–49 | DOI | MR | DOI | MR | DOI | MR | Zbl | Zbl | DOI | MR | Zbl

[4] A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, S. Shatashvili, Internat. J. Modern Phys. A, 5:13 (1990), 2495–2589 | DOI | MR

[5] A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 10:18 (1995), 2589–2614, arXiv: ; S. M. Kharchev, S. M. Khoroshkin, D. R. Lebedev, ТМФ, 104:1 (1995), 144–157, arXiv: ; А. Д. Миронов, ТМФ, 114:2 (1998), 163–232 ; A. Mironov, “Quantum deformations of $\tau$-functions, bilinear identities, and representation theory”, Symmetries and Integrability of Difference Equations (Estérel, PQ, May 22–29, 1994), CRM Proceedings and Lecture Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, AMS, Providence, RI, 1996, 219–237, arXiv: hep-th/9405011q-alg/9501013hep-th/9409190 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR

[6] S.-S. Chern, J. Simons, Ann. Math. (2), 99:1 (1974), 48–69 | DOI | MR | Zbl

[7] E. Witten, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl

[8] E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons field theory and quantum groups”, Quantum Groups, Proceedings of the 8th International Workshop on Mathematical Physics (Arnold Sommerfeld Institute, Clausthal, Germany, 19–26 July, 1989), Lecture Notes in Physics, 370, eds. H.-D. Doebner, J.-D. Hennig, Springer, Berlin, 307–317 ; Phys. Lett. B, 235:3–4 (1990), 275–281 ; N. Yu. Reshetikhin, V. G. Turaev, Commun. Math. Phys., 127:1 (1990), 1–26 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[9] P. Ramadevi, T. R. Govindarajan, R. K. Kaul, Nucl. Phys. B, 402:1–2 (1993), 548–566, arXiv: ; 422:1–2 (1994), 291–306, arXiv: hep-th/9212110hep-th/9312215 | DOI | MR | DOI | MR | Zbl

[10] A. Morozov, A. Smirnov, Nucl. Phys. B, 835:3 (2010), 284–313, arXiv: 1001.2003 | DOI | MR | Zbl

[11] A. Mironov, A. Morozov, And. Morozov, “Character expansion for HOMFLY polynomials. I. Integrability and difference equations”, Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer, eds. A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, E. Scheidegger, World Sci., Singapore, 2013, 101–118, arXiv: ; JHEP, 03 (2012), 034, 34 pp., arXiv: 1112.57541112.2654 | MR | Zbl | DOI | MR

[12] M. Atiyah, The Geometry and Physics of Knots, Cambridge Univ. Press, Cambridge, 1990 | DOI | MR | Zbl

[13] L. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl

[14] N. Wyllard, JHEP, 11 (2009), 002, 22 pp., arXiv: 0907.2189 | DOI | MR

[15] A. Mironov, A. Morozov, Nucl. Phys. B, 825:1–2 (2009), 1–37, arXiv: 0908.2569 | MR

[16] R. Dijkgraaf, C. Vafa, Toda Theories, matrix models, topological strings, and $N=2$ gauge systems, arXiv: ; T. Eguchi, K. Maruyoshi, Penner type matrix model and Seiberg–Witten theory, arXiv: ; JHEP, 2 (2010), 022, 21 pp., arXiv: ; H. Itoyama, K. Maruyoshi, T. Oota, Prog. Theor. Phys., 123:6 (2010), 957–987, arXiv: 0909.24530911.47971006.08280911.4244 | MR | MR | DOI | MR | Zbl | DOI | Zbl

[17] A. Mironov, A. Morozov, Sh. Shakirov, JHEP, 02 (2010), 030, 26 pp., arXiv: ; Internat. J. Modern Phys. A, 25:16 (2010), 3173–3207, arXiv: ; JHEP, 03 (2011), 102, 25 pp., arXiv: ; A. Mironov, Al. Morozov, And. Morozov, Nucl. Phys. B, 843:2 (2011), 534–557, arXiv: 0911.57211001.05631011.34811003.5752 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[18] A. Mironov, A. Morozov, Sh. Shakirov, JHEP, 02 (2011), 067, 41 pp., arXiv: 1012.3137 | DOI

[19] V. A. Alba, V. A. Fateev, A. V. Litvinov, G. M. Tarnopolsky, Lett. Math. Phys., 98:1 (2011), 33–64, arXiv: ; A. Belavin, V. Belavin, Nucl. Phys. B, 850:1 (2011), 199–213, arXiv: ; S. Mironov, An. Morozov, Y. Zenkevich, Письма в ЖЭТФ, 99:2 (2014), 115–119, arXiv: ; Y. Matsuo, C. Rim, H. Zhang, JHEP, 09 (2014), 028, 27 pp., arXiv: 1012.13121102.03431312.57321405.3141 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | DOI

[20] H. Awata, Y. Yamada, JHEP, 01 (2010), 125, 11 pp., arXiv: 0910.4431 | DOI | MR

[21] A. Mironov, A. Morozov, Sh. Shakirov, A. Smirnov, Nucl. Phys. B, 855:1 (2012), 128–151, arXiv: 1105.0948 | DOI | MR | Zbl

[22] H. Itoyama, T. Oota, R. Yoshioka, Nucl. Phys. B, 877:2 (2013), 506–537, arXiv: 1308.2068 | DOI | MR | Zbl

[23] A. Losev, N. Nekrasov, S. Shatashvili, Nucl. Phys. B, 534:3 (1998), 549–611, arXiv: ; “Testing Seiberg–Witten solution”, L. D. Faddeev's Seminar on Mathematical Physics, Translations American Mathematical Society. Ser. 2, 201, ed. M. Semenov-Tian-Shansky, AMS, Providence, RI, 2000, 123–135, arXiv: ; G. Moore, N. Nekrasov, S. Shatashvili, Commun. Math. Phys., 209:1 (2000), 77–95, arXiv: ; 97–121, arXiv: hep-th/9711108hep-th/9801061hep-th/9803265hep-th/9712241 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[24] N. Nekrasov, Adv. Theor. Math. Phys., 7:5 (2004), 831–864 ; R. Flume, R. Pogossian, Internat. J. Modern Phys. A, 18:14 (2003), 2541–2563, arXiv: ; N. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progress in Mathematics, 244, eds. P. Etingof, V. Retakh, I. M. Singer, Birkhäuser, Boston, MA, 2006, 525–596, arXiv: hep-th/0208176hep-th/0306238 | DOI | MR | DOI | MR | Zbl | DOI | MR

[25] V. Pestun, JHEP, 12 (2012), 067, 40 pp., arXiv: 0906.0638 | DOI | MR

[26] A. Mironov, A. Morozov, Phys. Lett. B, 680:2 (2009), 188–194, arXiv: 0908.2190 | DOI | MR

[27] M. Bershtein, O. Foda, JHEP, 06 (2014), 177, 26 pp., arXiv: ; K. B. Alkalaev, V. A. Belavin, Conformal blocks of $W_N$ minimal models and AGT correspondence, arXiv: 1404.70751404.7094 | DOI | MR

[28] Al. B. Zamolodchikov, ZhETF, 90:5, 1808–1818 ; ТМФ, 73:1 (1987), 103–110 | MR | DOI | MR

[29] A. Marshakov, A. Mironov, A. Morozov, JHEP, 11 (2009), 048, 16 pp., arXiv: 0909.3338 | DOI | MR

[30] R. Poghossian, JHEP, 12 (2009), 038, 14 pp., arXiv: 0909.3412 | DOI | MR

[31] Al. Zamolodchikov, Commun. Math. Phys., 96:3 (1984), 419–422 | DOI | MR

[32] Al. Zamolodchikov, Nucl. Phys. B, 285:3 (1987), 481–503 | DOI | MR

[33] G. V. Belyi, Izv. AN SSSR. Ser. matem., 43:2 (1979), 267–276 ; A. Grothendieck, “Esquisse d'un programme”, Geometric Galois Action, v. 1, London Mathematical Society Lecture Note Series, 242, Around Grothendieck's Esquisse d'un Programme, eds. L. Schneps, P. Lochak, Cambridge Univ. Press, Cambridge, 1997, 5–48 | DOI | MR | Zbl | MR

[34] D. Friedan, S. Shenker, Phys. Lett. B, 175:3 (1986), 287–296 ; N. Ishibashi, Y. Matsuo, H. Ooguri, Modern Phys. Lett. A, 2:2 (1987), 119–132 ; L. Alvarez-Gaume, C. Gomez, C. Reina, Phys. Lett. B, 190:1–2 (1987), 55–62 ; E. Witten, Commun. Math. Phys., 113:4 (1988), 529–600 ; A. Morozov, Phys. Lett. B, 196:3 (1987), 325–328 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[35] A. Levin, A. Morozov, Phys. Lett. B, 243:3 (1990), 207–214 | DOI | MR

[36] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, 166, no. 1, 2011, 3–27, arXiv: ; A. Mironov, A. Morozov, S. Natanzon, J. Geom. Phys., 62:2 (2012), 148–155, arXiv: 0904.42271012.0433 | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[37] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051, arXiv: ; А. Ю. Орлов, Д. М. Щербин, ТМФ, 128:1 (2001), 84–108 ; А. Ю. Орлов, ТМФ, 146:2 (2006), 222–250 ; A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, J. Phys. A: Math. Theor., 45:4 (2012), 045209, 10 pp., arXiv: hep-th/93122101103.4100 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[38] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, JHEP, 11 (2014), 080, 30 pp., arXiv: 1405.1395 | DOI | MR | Zbl

[39] N. Nemkov, On fusion kernel in Liouville theory, arXiv: 1409.3537

[40] Al. Zamolodchikov, chastnoe soobschenie

[41] B. Ponsot, J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, arXiv: ; Commun. Math. Phys., 224:3 (2001), 613–655, arXiv: hep-th/9911110math/0007097 | DOI | MR

[42] V. G. Knizhnik, A. Yu. Morozov, Pisma v ZhETF, 39:5 (1984), 202–205; H. Levine, S. Libby, Phys. Lett. B, 150:1–3 (1985), 182–186 | DOI

[43] N. Seiberg, E. Witten, Nucl. Phys. B, 426:1 (1994), 19–52, arXiv: hep-th/9407087 | DOI | MR | Zbl

[44] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355:3–4 (1995), 466–477, arXiv: ; R. Donagi, E. Witten, Nucl. Phys. B, 460:2 (1996), 299–334, arXiv: hep-th/9505035hep-th/9510101 | DOI | MR | DOI | MR | Zbl

[45] H. Itoyama, A. Morozov, Nucl. Phys. B, 477:3 (1996), 855–877, arXiv: ; Nucl. Phys. B, 491:3 (1997), 529–573, arXiv: ; “Integrability and Seiberg–Witten theory”, Frontiers in Quantum Field Theory (Osaka University, Osaka, Japan, 14–17 December, 1995), eds. H. Itoyama, H. Kunitomo, H. Shirokura, M. Niuomiya, World Sci., Singapore, 1996, 301–324, arXiv: ; A. Gorsky, A. Mironov, “Integrable many-body systems and gauge theories”, Integrable Hierarchies and Modern Physical Theories, NATO Science Series, 18, eds. H. Aratyn, A. S. Sorin, Kluwer, Dordrecht, 2001, arXiv: hep-th/9511126hep-th/9512161hep-th/9601168hep-th/0011197 | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI | MR | Zbl

[46] Vl. S. Dotsenko, V. A. Fateev, Nucl. Phys. B, 240:3 (1984), 312–348 | DOI | MR

[47] B. L. Feigin, D. B. Fuks, Funkts. analiz i ego pril., 16:2 (1982), 47–63 | DOI | MR | Zbl

[48] M. Wakimoto, Commun. Math. Phys., 104:4 (1986), 605–609 | DOI | MR | Zbl

[49] P. Zograf, Enumeration of Grothendieck's dessins and KP hierarchy, arXiv: 1312.2538 | MR

[50] R. Hirota, Phys. Rev. Lett., 27:18 (1971), 1192–1194 ; Y. Ohta, J. Satsuma, D. Takahashi, T. Tokihiro, Prog. Theoret. Phys. Suppl., 94 (1988), 210–241 | DOI | Zbl | DOI | MR

[51] G. Moore, N. Seiberg, Phys. Lett. B, 220:3 (1989), 422–430 | DOI | MR

[52] A. V. Marshakov, A. D. Mironov, A. Yu. Morozov, TMF, 164:1 (2010), 3–27, arXiv: 0907.3946 | DOI | DOI | Zbl

[53] A. D. Mironov, S. A. Mironov, A. Yu. Morozov, A. A. Morozov, TMF, 165:3 (2010), 503–542, arXiv: 0908.2064 | DOI | DOI | Zbl

[54] K. W. J. Kadell, Compositio Math., 87:1 (1993), 5–43 ; Adv. Math., 130:1 (1997), 33–102 ; J. Kaneko, SIAM J. Math. Anal., 24:4 (1993), 1086–1110 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[55] H. Itoyama, T.Oota, Nucl. Phys. B, 838:3 (2010), 298–330, arXiv: 1003.2929 | DOI | MR | Zbl

[56] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, S. Pakuliak, Nucl. Phys. B, 404:3 (1993), 717–750, arXiv: ; A. Mironov, S. Pakuliak, Internat. J. Modern Phys. A, 8:18 (1993), 3107–3137, arXiv: ; H. Awata, Y. Matsuo, S. Odake, J. Shiraishi, Soryushiron Kenkyu, 91 (1995), A69–A75, arXiv: hep-th/9208044hep-th/9209100hep-th/9503028 | DOI | MR | Zbl | DOI | MR | Zbl

[57] D. Galakhov, A. Mironov, A. Morozov, JHEP, 06 (2014), 050, 24 pp., arXiv: 1311.7069 | DOI

[58] N. Iorgov, O. Lisovyy, Yu. Tykhyy, JHEP, 12 (2013), 029, 27 pp., arXiv: 1308.4092 | DOI | MR | Zbl

[59] D. Galakhov, A. Mironov, A. Morozov, JHEP, 08 (2012), 67, 27 pp., arXiv: ; N. Nemkov, J. Phys. A: Math. Theor., 47:10 (2014), 105401, 15 pp., arXiv: ; M. Billo, M. Frau, L. Gallot, A. Lerda, I. Pesando, JHEP, 04 (2013), 039, 32 pp., arXiv: ; JHEP, 11 (2013), 123, 34 pp., arXiv: ; JHEP, 12 (2013), 029, 27 pp., arXiv: 1205.49981307.07731302.06861307.66481308.4092 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI

[60] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | Zbl

[61] A. Marshakov, A. Mironov, A. Morozov, J. Geom. Phys., 61:7 (2011), 1203–1222, arXiv: 1011.4491 | DOI | MR | Zbl

[62] A. Alexandrov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 21:12 (2006), 2481–2517, arXiv: ; Fortsch. Phys., 53:5–6 (2005), 512–521, arXiv: hep-th/0412099hep-th/0412205 | DOI | MR | Zbl | DOI | MR | Zbl