Gibbs measures for a~generalized Potts model with the~interaction radius two on a~Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 450-459
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a generalized Potts model on a Cayley tree of order $k=3$. Under some conditions on the parameters, we show that there exist at most two translation-invariant Gibbs measures and a continuum of Gibbs measures that are not translation invariant. For any index-two normal divisor $\widehat G$ of the group realizing the Cayley tree, we study $\widehat hG$-periodic Gibbs measures. The existence of an uncountable set of $\widehat hG$-periodic Gibbs measures (which are not translation invariant and not “checkerboard” periodic) is proved.
Keywords:
Cayley tree, generalized Potts model, Gibbs measure.
Mots-clés : configuration
Mots-clés : configuration
@article{TMF_2015_183_3_a7,
author = {N. M. Khatamov and G. T. Madgoziev},
title = {Gibbs measures for a~generalized {Potts} model with the~interaction radius two on {a~Cayley} tree},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {450--459},
publisher = {mathdoc},
volume = {183},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a7/}
}
TY - JOUR AU - N. M. Khatamov AU - G. T. Madgoziev TI - Gibbs measures for a~generalized Potts model with the~interaction radius two on a~Cayley tree JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2015 SP - 450 EP - 459 VL - 183 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a7/ LA - ru ID - TMF_2015_183_3_a7 ER -
%0 Journal Article %A N. M. Khatamov %A G. T. Madgoziev %T Gibbs measures for a~generalized Potts model with the~interaction radius two on a~Cayley tree %J Teoretičeskaâ i matematičeskaâ fizika %D 2015 %P 450-459 %V 183 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a7/ %G ru %F TMF_2015_183_3_a7
N. M. Khatamov; G. T. Madgoziev. Gibbs measures for a~generalized Potts model with the~interaction radius two on a~Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 450-459. http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a7/