Gibbs measures for a generalized Potts model with the interaction radius two on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 450-459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a generalized Potts model on a Cayley tree of order $k=3$. Under some conditions on the parameters, we show that there exist at most two translation-invariant Gibbs measures and a continuum of Gibbs measures that are not translation invariant. For any index-two normal divisor $\widehat G$ of the group realizing the Cayley tree, we study $\widehat hG$-periodic Gibbs measures. The existence of an uncountable set of $\widehat hG$-periodic Gibbs measures (which are not translation invariant and not “checkerboard” periodic) is proved.
Keywords: Cayley tree, generalized Potts model, Gibbs measure.
Mots-clés : configuration
@article{TMF_2015_183_3_a7,
     author = {N. M. Khatamov and G. T. Madgoziev},
     title = {Gibbs measures for a~generalized {Potts} model with the~interaction radius two on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {450--459},
     year = {2015},
     volume = {183},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a7/}
}
TY  - JOUR
AU  - N. M. Khatamov
AU  - G. T. Madgoziev
TI  - Gibbs measures for a generalized Potts model with the interaction radius two on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 450
EP  - 459
VL  - 183
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a7/
LA  - ru
ID  - TMF_2015_183_3_a7
ER  - 
%0 Journal Article
%A N. M. Khatamov
%A G. T. Madgoziev
%T Gibbs measures for a generalized Potts model with the interaction radius two on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 450-459
%V 183
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a7/
%G ru
%F TMF_2015_183_3_a7
N. M. Khatamov; G. T. Madgoziev. Gibbs measures for a generalized Potts model with the interaction radius two on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 450-459. http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a7/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl | Zbl

[3] C. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Mathematics, 68, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[4] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl

[5] N. N. Ganikhodzhaev, TMF, 85:2 (1990), 163–175 | DOI | MR

[6] N. N. Ganikhodzhaev, Dokl. AN RUz, 1992, no. 6–7, 4–7

[7] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | DOI | MR | Zbl

[8] N. N. Ganikhodjaev, U. A. Rozikov, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR | Zbl

[9] C. Kuelske, U. A. Rozikov, J. Stat. Phys., 156:1 (2014), 189–200, arXiv: 1310.6220 | DOI | MR | Zbl

[10] C. Kuelske, U. A. Rozikov, Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree, arXiv: 1403.5775 | MR

[11] U. A. Rozikov, M. M. Rakhmatullaev, TMF, 160:3 (2009), 507–516 | DOI | DOI | MR | Zbl

[12] M. M. Rakhmatullaev, TMF, 176:3 (2013), 477–493 | DOI | DOI | MR | Zbl

[13] U. A. Rozikov, G. T. Madgoziev, TMF, 167:2 (2011), 311–322 | DOI | DOI | MR | Zbl

[14] U. A. Rozikov, J. Stat. Phys., 130:4 (2008), 801–813 | DOI | MR | Zbl

[15] U. A. Rozikov, J. Stat. Phys., 122:2 (2006), 217–235 | DOI | MR | Zbl

[16] V. V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, 11, Springer, Berlin, 2004 | MR | Zbl

[17] P. M. Blekher, N. N. Ganikhodzhaev, TVP, 35:2 (1990), 220–230 | DOI | MR | Zbl

[18] U. A. Rozikov, TMF, 118:1 (1999), 95–104 | DOI | DOI | MR | Zbl