Translation-invariant Gibbs measures for fertile three-state “hard core” models on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 441-449 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider fertile three-state "hard core" models with the activity parameter $\lambda>0$ on an order-three Cayley tree. It is known that there exist four types of such models: in two of them, the translation-invariant Gibbs measure is unique for $\lambda>0$, and in the other two, a value $\lambda_\mathrm{cr}$ is found such that there exist only three translation-invariant Gibbs measures for $\lambda>\lambda_\mathrm{cr}$ and a single translation-invariant Gibbs measure for $\lambda\le\lambda_\mathrm{cr}$.
Keywords: Cayley tree, hard core model, Gibbs measure, translation-invariant measure.
Mots-clés : configuration
@article{TMF_2015_183_3_a6,
     author = {R. M. Khakimov},
     title = {Translation-invariant {Gibbs} measures for fertile three-state {\textquotedblleft}hard core{\textquotedblright} models on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--449},
     year = {2015},
     volume = {183},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a6/}
}
TY  - JOUR
AU  - R. M. Khakimov
TI  - Translation-invariant Gibbs measures for fertile three-state “hard core” models on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 441
EP  - 449
VL  - 183
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a6/
LA  - ru
ID  - TMF_2015_183_3_a6
ER  - 
%0 Journal Article
%A R. M. Khakimov
%T Translation-invariant Gibbs measures for fertile three-state “hard core” models on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 441-449
%V 183
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a6/
%G ru
%F TMF_2015_183_3_a6
R. M. Khakimov. Translation-invariant Gibbs measures for fertile three-state “hard core” models on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 441-449. http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a6/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] C. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Mathematics, 68, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl | Zbl

[4] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | DOI | MR | Zbl

[5] N. N. Ganikhodzhaev, U. A. Rozikov, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR

[6] C. Külske, U. A. Rozikov, R. M. Khakimov, J. Stat. Phys., 156:1 (2014), 189–200 | DOI | MR | Zbl

[7] Yu. M. Suhov, U. A. Rozikov, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR | Zbl

[8] R. M. Khakimov, Matem. zametki, 94:5 (2013), 796–800 | DOI | DOI | MR | Zbl

[9] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[10] U. A. Rozikov, Sh. A. Shoyusupov, TMF, 149:1 (2006), 18–31 | DOI | DOI | MR | Zbl

[11] G. Brightwell, P. Winkler, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR | Zbl