Mots-clés : monodromy matrix
@article{TMF_2015_183_3_a4,
author = {N. A. Slavnov},
title = {One-dimensional two-component {Bose} gas and the~algebraic {Bethe} ansatz},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {409--433},
year = {2015},
volume = {183},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a4/}
}
N. A. Slavnov. One-dimensional two-component Bose gas and the algebraic Bethe ansatz. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 409-433. http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a4/
[1] E. H. Lieb, W. Liniger, Phys. Rev., 130:4 (1963), 1605–1616 | DOI | MR | Zbl
[2] E. H. Lieb, Phys. Rev., 130:4 (1963), 1616–1624 | DOI | MR | Zbl
[3] C. N. Yang, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR | Zbl
[4] B. Sutherland, Phys. Rev. Lett., 20:3 (1968), 98–100 | DOI
[5] B. Sutherland, Phys. Rev. B, 12:9 (1975), 3795–3805 | DOI
[6] M. Gaudin, La fonction d'onde de Bethe, Masson, Paris, 1983 | MR | Zbl
[7] P. P. Kulish, Phys. D, 3:1–2 (1981), 246–257 | DOI | Zbl
[8] P. P. Kulish, N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 120 (1982), 92–121 | MR
[9] N. Kitanine, J. M. Maillet, V. Terras, Nucl. Phys. B, 554:3 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl
[10] J. M. Maillet, V. Terras, Nucl. Phys. B, 575:3 (2000), 627–644, arXiv: hep-th/9911030 | DOI | MR | Zbl
[11] B. Pozsgay, W.-V. G. van Oei, M. Kormos, J. Phys. A: Math. Theor., 45:46 (2012), 465007, 34 pp., arXiv: 1204.4037 | DOI | MR | Zbl
[12] S. Pakuliak, E. Ragoucy, N. A. Slavnov, GL(3)-based quantum integrable composite models: 2. Form factors of local operators, arXiv: 1502.01966 | MR
[13] S. Pakuliak, E. Ragoucy, N. A. Slavnov, Nucl. Phys. B, 893 (2015), 459–481, arXiv: 1412.6037 | DOI | MR | Zbl
[14] A. G. Izergin, V. E. Korepin, Commun. Math. Phys., 94:1 (1984), 67–92 | DOI | MR | Zbl
[15] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40:2 (1979), 194–220 | DOI | MR
[16] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[17] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches summer school, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl
[18] P. P. Kulish, N. Yu. Reshetikhin, ZhETF, 80:1 (1981), 214–228 | MR
[19] P. P. Kulish, N. Yu. Reshetikhin, J. Phys. A: Math. Gen., 16:16 (1983), L591–L596 | DOI | MR | Zbl
[20] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 04 (2013), P04033, 16 pp., arXiv: 1211.3968 | DOI | MR
[21] S. Pakuliak, E. Ragoucy, N. A. Slavnov, Nucl. Phys. B, 881 (2014), 343–368, arXiv: 1312.1488 | DOI | MR | Zbl
[22] A. N. Varchenko, V. O. Tarasov, Algebra i analiz, 6:2 (1994), 90–137, arXiv: hep-th/9311040 | DOI | MR | Zbl
[23] S. Khoroshkin, S. Pakuliak, V. Tarasov, J. Geom. Phys., 57:8 (2007), 1713–1732, arXiv: math/0610517 | DOI | MR | Zbl
[24] S. Khoroshkin, S. Pakuliak, J. Math. Kyoto Univ., 48:2 (2008), 277–321, arXiv: 0711.2819 | DOI | MR | Zbl
[25] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 02 (2013), P02020, 24 pp., arXiv: 1210.0768 | DOI | MR
[26] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[27] A. G. Izergin, Dokl. AN SSSR, 297:2 (1987), 331–333 | MR | Zbl
[28] B. Enriquez, S. Khoroshkin, S. Pakuliak, Commun. Math. Phys., 276:3 (2007), 691–725 | DOI | MR | Zbl
[29] S. Pakuliak, E. Ragoucy, N. A. Slavnov, GL(3)-based quantum integrable composite models: 1. Bethe vectors, arXiv: 1501.07566 | MR
[30] A. G. Izergin, V. E. Korepin, N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 150 (1986), 26–36 | MR
[31] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[32] A. G. Izergin, V. E. Korepin, Dokl. AN SSSR, 259 (1981), 76–79 | Zbl
[33] A. G. Izergin, V. E. Korepin, Nucl. Phys. B, 205:3 (1982), 401–413 | DOI | MR
[34] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 57:2 (1983), 163–181 | DOI | MR
[35] N. M. Bogolyubov, V. E. Korepin, TMF, 66:3 (1986), 455–462 | DOI | MR
[36] N. G. de Bruijn, Asymptotic Methods in Analysis, Bibliotheca Mathematica, 4, North-Holland, Amsterdam, 1961 | MR | Zbl
[37] A. Erdeii, Asimptoticheskie razlozheniya, Fitmatgiz, M., 1962 | MR | Zbl
[38] E. Mukhin, V. Tarasov, A. Varchenko, J. Stat. Mech., 08 (2006), P08002, 44 pp., arXiv: math/0605015 | DOI | MR