One-dimensional two-component Bose gas and the~algebraic Bethe ansatz
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 409-433
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We apply the nested algebraic Bethe ansatz to a model of a one-dimensional two-component Bose gas with a $\delta$-function repulsive interaction. Using a lattice approximation of the $L$-operator, we find the Bethe vectors of the model in the continuum limit. We also obtain a series representation for the monodromy matrix of the model in terms of Bose fields. This representation allows studying an asymptotic expansion of the monodromy matrix over the spectral parameter.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Bethe ansatz, Bethe vector.
Mots-clés : monodromy matrix
                    
                  
                
                
                Mots-clés : monodromy matrix
@article{TMF_2015_183_3_a4,
     author = {N. A. Slavnov},
     title = {One-dimensional two-component {Bose} gas and the~algebraic {Bethe} ansatz},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {409--433},
     publisher = {mathdoc},
     volume = {183},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a4/}
}
                      
                      
                    N. A. Slavnov. One-dimensional two-component Bose gas and the~algebraic Bethe ansatz. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 409-433. http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a4/
