Bäcklund transformations relating different Hamilton–Jacobi equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 372-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss one of the possible finite-dimensional analogues of the general Bäcklund transformation relating different partial differential equations. We show that different Hamilton–Jacobi equations can be obtained from the same Lax matrix. We consider Hénon–Heiles systems on the plane, Neumann and Chaplygin systems on the sphere, and two integrable systems with velocity-dependent potentials as examples.
Keywords: general Bäcklund transformation, Hamilton–Jacobi equation, separation of variables
Mots-clés : Lax matrix.
@article{TMF_2015_183_3_a2,
     author = {A. P. Sozonov and A. V. Tsiganov},
     title = {B\"acklund transformations relating different {Hamilton{\textendash}Jacobi} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {372--387},
     year = {2015},
     volume = {183},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a2/}
}
TY  - JOUR
AU  - A. P. Sozonov
AU  - A. V. Tsiganov
TI  - Bäcklund transformations relating different Hamilton–Jacobi equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 372
EP  - 387
VL  - 183
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a2/
LA  - ru
ID  - TMF_2015_183_3_a2
ER  - 
%0 Journal Article
%A A. P. Sozonov
%A A. V. Tsiganov
%T Bäcklund transformations relating different Hamilton–Jacobi equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 372-387
%V 183
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a2/
%G ru
%F TMF_2015_183_3_a2
A. P. Sozonov; A. V. Tsiganov. Bäcklund transformations relating different Hamilton–Jacobi equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 372-387. http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a2/

[1] Y. C. Li, A. Yurov, Lie–Bäcklund–Darboux Transformations, Surveys of Modern Mathematics, VIII, International Press, Somerville, MA; Higher Education Press, Beijing, 2014 | MR | Zbl

[2] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, 30, Cambridge Univ. Press, Cambridge, 2002 | MR

[3] A. I. Bobenko, Yu. B. Suris, Diskretnaya differentsialnaya geometriya. Integriruemaya struktura, RKhD, Izhevsk, 2010

[4] F. W. Nijhoff, Discrete Systems and Integrability, Academic Lecture Notes, University of Leeds, Leeds, UK, 2006

[5] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Springer, Berlin, 2003 | MR

[6] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl

[7] S. Wojciechowski, J. Phys. A: Math. Gen., 15:12 (1982), L653–L657 | DOI | MR

[8] V. Kuznetsov, P. Vanhaecke, J. Geom. Phys., 44:1 (2002), 1–40 | DOI | MR | Zbl

[9] F. Zullo, J. Phys. A: Math. Theor., 46:14 (2013), 145203, 16 pp., arXiv: 1207.0387 | DOI | MR | Zbl

[10] W. Miller, S. Post, P. Winternitz, J. Phys. A: Math. Theor., 46:42 (2013), 423001, 97 pp. | DOI | MR | Zbl

[11] A. V. Tsiganov, Reg. Chaotic Dyn., 20:1 (2015), 74–93 | DOI | MR | Zbl

[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 1, Mekhanika, Fizmatlit, M., 2004 | MR

[13] E. G. Kalnins, Separation of Variables for Riemann Spaces of Constant Curvature. Longman Scientific $\$ Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, New York, 1986 | MR | Zbl

[14] A. P. Fordy, Phys. D, 52:2–3 (1991), 204–210 | DOI | MR | Zbl

[15] R. Conte, M. Musette, C. Verhoeven, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 212–227, arXiv: nlin/0412057 | DOI | MR

[16] V. Ravoson, L. Gavrilov, R. Caboz, J. Math. Phys., 34:6 (1993), 2385–2393 | DOI | MR | Zbl

[17] M. Salerno, V. Z. Enol'skii, D. V. Leykin, Phys. Rev. E, 49:6 (1994), 5897–5899 | DOI | MR

[18] S. Rauch-Wojciechowski, A. V. Tsiganov, J. Phys. A: Math. Gen., 29:23 (1996), 7769–7778 | DOI | MR | Zbl

[19] A. V. Tsiganov, J. Math. Phys., 40:1 (1999), 279–298 | DOI | MR | Zbl

[20] A. V. Tsyganov, TMF, 139:2 (2004), 225–244 | DOI | DOI | MR | Zbl

[21] J. Hietarinta, Phys. Rep., 147:2 (1987), 87–154 | DOI | MR

[22] G. Pucacco, Celestial Mech. Dynam. Astronomy, 90:1–2 (2004), 109–123 | DOI | MR

[23] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Trudy otdeleniya fizich. nauk Obsch. lyubit. estestvoznaniya, XI, Tipo-\allowbreaklitografiya N. N. Sharapova, M., 1902, 10–19

[24] O. I. Bogoyavlenskii, Izv. AN SSSR. Ser. matem., 49:5 (1985), 899–915 | DOI | MR | Zbl

[25] V. V. Sokolov, TMF, 129:1 (2001), 31–37 | DOI | DOI | MR | Zbl

[26] V. V. Sokolov, “Generalized Kowalevski top: new integrable cases on $e(3)$ and $so(4)$”, The Kowalevski Property (University of Leeds, April 12–15, 2000), CRM Proceedings and Lecture Notes, 32, ed. V. B. Kuznetsov, AMS, Providence, RI, 2002, 307–313 | DOI | MR | Zbl

[27] V. V. Sokolov, A. V. Tsyganov, TMF, 131:1 (2002), 118–125 | DOI | DOI | MR | Zbl

[28] V. V. Sokolov, A. V. Tsyganov, TMF, 133:3 (2002), 485–500 | DOI | DOI | MR | Zbl

[29] C. G. J. Jacobi, Vorlesungen über Dynamik, G. Reimer, Berlin, 1866 | Zbl