Finsler $N$-spinors with real components
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 359-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the mathematical objects called Finsler $N$-spinors over the field $\mathbb{R}$ and construct the general algebraic theory of these objects. We show that the Finsler $N$-spinors over the field $\mathbb{R}$ generate two families of $N(N{+}1)/2$- and $N(N{-}1)/2$-dimensional flat pseudo-Finsler spaces. We generalize the epimorphism $SL(2,\mathbb{R})\to O^\uparrow_+(1,2)$ to the case of the group $SL(N,\mathbb{R})$. We consider the examples of Finsler $N$-spinors over the field $\mathbb{R}$ for $N=2,3$ in detail.
Keywords: hyperspinor, Finsler $N$-spinor, group $SL(N,\mathbb R)$.
Mots-clés : pseudo-Finsler space
@article{TMF_2015_183_3_a1,
     author = {A. V. Solov'ev},
     title = {Finsler $N$-spinors with real components},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {359--371},
     year = {2015},
     volume = {183},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a1/}
}
TY  - JOUR
AU  - A. V. Solov'ev
TI  - Finsler $N$-spinors with real components
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 359
EP  - 371
VL  - 183
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a1/
LA  - ru
ID  - TMF_2015_183_3_a1
ER  - 
%0 Journal Article
%A A. V. Solov'ev
%T Finsler $N$-spinors with real components
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 359-371
%V 183
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a1/
%G ru
%F TMF_2015_183_3_a1
A. V. Solov'ev. Finsler $N$-spinors with real components. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 3, pp. 359-371. http://geodesic.mathdoc.fr/item/TMF_2015_183_3_a1/

[1] D. Finkelstein, Phys. Rev. Lett., 56:15 (1986), 1532–1533 | DOI | MR | Zbl

[2] D. Finkelstein, S. R. Finkelstein, C. Holm, Internat. J. Theor. Phys., 25:4 (1986), 441–463 | DOI | MR | Zbl

[3] Yu. S. Vladimirov, A. V. Solovev, “Fizicheskaya struktura ranga $(4,4;b)$ i trekhkomponentnye spinory”, Sistemologiya i metodologicheskie problemy informatsionno-logicheskikh sistem, Vychislitelnye sistemy, 135, Institut matematiki SO AN SSSR, Novosibirsk, 1990, 44–66 | MR | Zbl

[4] A. V. Solovev, “K teorii binarnykh fizicheskikh struktur ranga $(5,5;b)$ i vyshe”, Sistemologiya i metodologicheskie problemy informatsionno-logicheskikh sistem, Vychislitelnye sistemy, 135, Institut matematiki SO AN SSSR, Novosibirsk, 1990, 67–77 | MR

[5] A. V. Solov'yov, Yu. S. Vladimirov, Internat. J. Theor. Phys., 40:8 (2001), 1511–1523 | DOI | MR

[6] D. Finkelstein, S. R. Finkelstein, C. Holm, Phys. Rev. Lett., 59:12 (1987), 1265–1266 | DOI

[7] S. R. Finkelstein, Internat. J. Theor. Phys., 27:2 (1988), 251–272 | DOI | MR | Zbl

[8] C. Holm, J. Math. Phys., 29:4 (1988), 978–986 | DOI | MR | Zbl

[9] C. Holm, J. Math. Phys., 29:10 (1988), 2273–2279 | DOI | MR | Zbl

[10] C. Holm, Internat. J. Theor. Phys., 29:1 (1990), 23–36 | DOI | MR | Zbl

[11] D. C. Honeycutt, Internat. J. Theor. Phys., 30:12 (1991), 1613–1644 | DOI | MR | Zbl

[12] D. C. Brody, L. P. Hughston, Proc. R. Soc. Lond. Ser. A, 461:2061 (2005), 2679–2699, arXiv: gr-qc/0406121 | DOI | MR | Zbl

[13] A. V. Solov'ev, Russ. J. Math. Phys., 13:4 (2006), 466–472 | DOI | MR | Zbl

[14] A. V. Solov'yov, J. Math. Sci., 172:6 (2011), 894–900 | DOI | MR | Zbl

[15] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, LKI, M., 2010 | MR

[16] S.-S. Chern, Z. Shen, Riemann–Finsler Geometry, Nankai Tracts in Mathematics, 6, World Sci., Singapore, 2005 | DOI | MR | Zbl

[17] M. Matsumoto, S. Numata, Tensor (N. S.), 33:2 (1979), 153–162 | MR | Zbl

[18] H. Shimada, Tensor (N. S.), 33:3 (1979), 365–372 | MR | Zbl

[19] M. M. Postnikov, Lektsii po geometrii. Semestr II. Lineinaya algebra, Nauka, M., 1986 | MR