Planar hydrogen-like atom in inhomogeneous magnetic fields: Exactly or quasi-exactly solvable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 329-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a simple mathematical method to solve the problem of a two-dimensional hydrogen-like atom in the inhomogeneous magnetic fields $\mathbf B=(k/r)\mathbf z$ and $\mathbf B=(k/r^3)\mathbf z$. We construct a Hamiltonian that takes the same form as the Hamiltonian of a hydrogen-like atom in the homogeneous magnetic fields and obtain the energy spectrum by comparing the Hamiltonians. The results show that the whole spectrum of the atom in the magnetic field $\mathbf B=(k/r)\mathbf z$ can be obtained, and the problem is exactly solvable in this case. We find analytic solutions of the Schrödinger equation for the atom in the magnetic field $\mathbf B=(k/r^3)\mathbf z$ for particular values of the magnetic strength $k$ and thus present a quasi-exactly solvable model.
Keywords: quasi-exactly solvable system, exactly solvable system.
@article{TMF_2015_183_2_a8,
     author = {Liyan Liu and Qinghai Hao},
     title = {Planar hydrogen-like atom in inhomogeneous magnetic fields: {Exactly} or quasi-exactly solvable models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--336},
     year = {2015},
     volume = {183},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a8/}
}
TY  - JOUR
AU  - Liyan Liu
AU  - Qinghai Hao
TI  - Planar hydrogen-like atom in inhomogeneous magnetic fields: Exactly or quasi-exactly solvable models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 329
EP  - 336
VL  - 183
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a8/
LA  - ru
ID  - TMF_2015_183_2_a8
ER  - 
%0 Journal Article
%A Liyan Liu
%A Qinghai Hao
%T Planar hydrogen-like atom in inhomogeneous magnetic fields: Exactly or quasi-exactly solvable models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 329-336
%V 183
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a8/
%G ru
%F TMF_2015_183_2_a8
Liyan Liu; Qinghai Hao. Planar hydrogen-like atom in inhomogeneous magnetic fields: Exactly or quasi-exactly solvable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 329-336. http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a8/

[1] J. Zeng, Quantum Mechanics, Science Press, Beijing, 2000 , (in Chinese)

[2] W. Greiner, Quantum Mechanics. An Introduction, Springer, Berlin, 1989

[3] M. A. Shifman, Lie Algebras, Cohomology, and New Applications to Quantum Mechanics (Springfield, MO, March 20–21,1992), Contemporary Mathematics, 160, eds. N. Kamran, P. J. Olver, AMS, Providence, RI, 1994 | DOI | MR

[4] M. A. Shifman, Internat. J. Modern Phys. A, 4:12 (1989), 2897–2952 | DOI | MR

[5] B. A. Turbiner, Commun. Math. Phys., 118:3 (1988), 467–474 | DOI | MR | Zbl

[6] M. A. Shifman, ITEP Lectures on Particle Physics and Field Theory, World Scientific Lecture Notes in Physics, 62, World Sci., Singapore, 1999 | Zbl

[7] A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics, IOP, Bristol, 1994 | MR

[8] A. V. Zabrodin, TMF, 104:1 (1995), 8–24 | DOI | MR | Zbl

[9] S. M. Klishevich, TMF, 150:2 (2007), 237–248 | DOI | DOI | MR | Zbl

[10] A. Samanta, S. K. Ghosh, Phys. Rev. A, 42:3 (1990), 1178–1183 | DOI

[11] M. Taut, Phys. Rev. A, 48:5 (1993), 3561–3566 | DOI

[12] A. V. Turbiner, Phys. Rev. A, 50:6 (1994), 5335–5337, arXiv: hep-th/9406018 | DOI

[13] A. D. Donkov, V. G. Kadyshevskii, M. D. Matveev, R. M. Mir-Kasimov, TMF, 8:1 (1971), 61–72 | DOI | MR

[14] Y. Brihaye, P. Kosinski, Modern Phys. Lett. A, 13:18 (1998), 1445–1452 | DOI | MR

[15] P.-F. Loos, P. M. W. Gill, Phys. Rev. Lett., 103:12 (2009), 123008, 4 pp. | DOI

[16] A. H. MacDonald, D. S. Ritchie, Phys. Rev. B, 33:12 (1986), 8336–8344 | DOI

[17] P. Martin, J. J. Rodriguez-Nuñez, J. L. Marquez, Phys. Rev. B, 45:15 (1992), 8359–8362 | DOI

[18] H. Friedrich, D. Wintgen, Phys. Rep., 183:2 (1989), 37–79 | DOI | MR

[19] W. Rösner, H. Herold, H. Ruder, G. Wunner, Phys. Rev. A, 28:4 (1983), 2071–2077 | DOI

[20] M. Taut, J. Phys. A, 27 (1994), 1045 | DOI | MR

[21] M. Taut, J. Phys. A, 28:7 (1995), 2081–2085 | DOI | MR | Zbl

[22] M. Taut, J. Phys. A: Math. Gen., 32:29 (1999), 5509–5515 | DOI | MR | Zbl

[23] V. M. Villalba, R. Pino, Phys. Lett. A, 238:1 (1998), 49–53, arXiv: cond-mat/9712044 | DOI

[24] C.-L. Ho, V. R. Khalilov, Phys. Rev. A, 61:3 (2000), 032104, 7 pp., arXiv: quant-ph/0003086 | DOI

[25] C.-M. Chiang, C.-L. Ho, Phys. Rev. A, 63:6 (2001), 062105, 5 pp., arXiv: hep-th/0011005 | DOI

[26] C.-L. Ho, P. Roy, Ann. Phys., 312:1 (2004), 161–176 | DOI | MR | Zbl