Generation of exactly solvable potentials of the $D$-dimensional position-dependent mass Schrödinger equation using the transformation method
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 312-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the extended transformation method to the constant-mass radial Schrödinger equation satisfied by a radially symmetric central potential in order to obtain exactly solvable quantum systems with a position-dependent mass in a space of arbitrary dimension in the nonrelativistic limit. The method consists of a coordinate transformation, a subsequent functional transformation, and a set of ansatzes for the mass function leading to the appearance of exactly solvable quantum systems with position-dependent masses. We also show that the Zhu–Kroemer ordering for the fitting parameter values is natural for systems with a radially symmetric mass function and a central potential. As an example, we apply the method to the Manning–Rosen potential and to the Morse potential with different choices of the mass functions. We also indicate an application of the method to the Hulthen potential.
Keywords: position-dependent mass, exact analytic solution, Manning–Rosen potential, Morse potential, extended transformation.
@article{TMF_2015_183_2_a7,
     author = {H. Rajbongshi and N. N. Singh},
     title = {Generation of exactly solvable potentials of the~$D$-dimensional position-dependent mass {Schr\"odinger} equation using the~transformation method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--328},
     year = {2015},
     volume = {183},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a7/}
}
TY  - JOUR
AU  - H. Rajbongshi
AU  - N. N. Singh
TI  - Generation of exactly solvable potentials of the $D$-dimensional position-dependent mass Schrödinger equation using the transformation method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 312
EP  - 328
VL  - 183
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a7/
LA  - ru
ID  - TMF_2015_183_2_a7
ER  - 
%0 Journal Article
%A H. Rajbongshi
%A N. N. Singh
%T Generation of exactly solvable potentials of the $D$-dimensional position-dependent mass Schrödinger equation using the transformation method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 312-328
%V 183
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a7/
%G ru
%F TMF_2015_183_2_a7
H. Rajbongshi; N. N. Singh. Generation of exactly solvable potentials of the $D$-dimensional position-dependent mass Schrödinger equation using the transformation method. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 312-328. http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a7/

[1] F. Cooper, A. Khare, U. Sukhatme, Phys. Rep., 251:5–6 (1995), 267–385, arXiv: hep-th/9405029 | DOI | MR

[2] S. A. S. Ahmed, Internat. J. Theor. Phys., 36:8 (1997), 1893–1905 | DOI | MR | Zbl

[3] N. Saikia, Turk. J. Phys., 36:2 (2012), 187–196 | DOI | MR

[4] N. Saikia, S. A. S. Akhmed, 168, no. 2, 2011, 291–298 | DOI | DOI | MR | Zbl

[5] S. A. S. Ahmed, B. C. Borah, D. Sharma, Eur. Phys. J. D, 17:1 (2001), 5–11 | DOI

[6] S. A. S. Ahmed, L. Buragohain, Phys. Scr., 80:2 (2009), 025004, 6 pp. | DOI | Zbl

[7] S. A. S. Ahmed, L. Buragohain, Eur. J. Theor. Phys., 7:23 (2010), 145–154

[8] N. Bhagawati, N. Saikia, N. N. Singh, Acta Phys. Polon. B, 44:8 (2013), 1711–1723, arXiv: 1309.3152 | DOI | MR

[9] N. Bhagawati, Acta Phys. Polon. B, 45:1 (2014), 15–28, arXiv: 1402.1265 | DOI | MR

[10] A. Bharali, Phys. Scr., 88:3 (2013), 035009, 7 pp. | DOI | Zbl

[11] J. P. Srivastava, Elements of Solid State Physics, Prentice Hall of India, New Delhi, 2008

[12] O. von Roos, Phys. Rev. B, 27:12 (1983), 7547–7552 | DOI

[13] R. Sever, C. Tezcan, Ö. Yeşiltaş, M. Bucurgat, Internat. J. Theor. Phys., 47:9 (2008), 2243–2248 | DOI | MR | Zbl

[14] C. Tezcan, Sever R., Ö. Yeşiltaş, Internat. J. Theor. Phys., 47:6 (2008), 1713–1721 | DOI | MR | Zbl

[15] C. Tezcan, R. Sever, J. Math. Chem., 42:3 (2007), 387–395 | DOI | MR | Zbl

[16] S.-H. Dong, M. Lozada-Cassou, Phys. Lett. A, 337:4–6 (2005), 313–320 | DOI | Zbl

[17] B. Bagchi, P. S. Gorain, C. Quesne, Modern Phys. Lett. A, 21:36 (2006), 2703–2708, arXiv: quant-ph/0607122 | DOI | MR | Zbl

[18] C. Quesne, V. M. Tkachuk, J. Phys. A: Math. Gen., 37:14 (2004), 4267–4281 | DOI | MR | Zbl

[19] M. Jafarpour, B. Ashtari, Adv. Stud. Theor. Phys., 5:1–4 (2011), 131–142 | MR | Zbl

[20] R. Sever, C. Tezcan, Internat. J. Modern Phys. E, 17:7 (2008), 1327–1334, arXiv: 0712.0268 | DOI

[21] S. Meyur, Bulg. J. Phys., 38:4 (2011), 357–363 | MR

[22] B. Roy, P. Roy, Phys. Lett. A, 340:1–4 (2005), 70–73 | DOI | Zbl

[23] A. D. Alhaidari, Phys. Rev. A, 66:4 (2002), 042116, 7 pp. | DOI

[24] C. Quesne, SIGMA, 5 (2009), 046, 17 pp. | DOI | MR | Zbl

[25] H. Panahi, Z. Bakhshi, Acta Phys. Polon. B, 41:1 (2010), 11–21

[26] R. Koç, H. Tütüncüler, Ann. Phys., 12:11 (2003), 684–691 | DOI | MR | Zbl

[27] C. Quesne, B. Bagchi, A. Banerjee, V. M. Tkachuk, Bulg. J. Phys., 33:4 (2006), 308–318 | MR | Zbl

[28] C. Quesne, SIGMA, 3 (2007), 067, 14 pp. | DOI | MR | Zbl

[29] C. Quesne, Ann. Phys. (N. Y.), 321:5 (2006), 1221–1239, arXiv: quant-ph/0508216 | DOI | MR | Zbl

[30] J. Yu, S.-H. Dong, G.-H. Sun, Phys. Lett. A, 322:5–6 (2004), 290–297 | DOI | MR | Zbl

[31] A. G. M. Schmidt, Phys. Lett. A, 353:6 (2006), 459–462 | DOI

[32] D. A. Kulikov, V. M. Shapoval, $\hbar$-Expansion for the Schrödinger equation with a position-dependent mass, arXiv: 1206.1666 | MR

[33] A. Schulze-Halberg, Internat. J. Modern Phys. A, 22:8–9 (2007), 1735–1769 | DOI | MR | Zbl

[34] A. Schulze-Halberg, Internat. J. Modern Phys. A, 23:3–4 (2008), 537–546 | DOI | MR | Zbl

[35] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Edition de Physique, Paris, 1988

[36] M. R. Geller, W. Kohn, Phys. Rev. Lett., 70:20 (1993), 3103–3106 | DOI

[37] P. Harrison, Quantum Wells, Wires and Dots. Theoretical and Computational Physics, John Wiley Sons, New York, 2000

[38] L. Serra, E. Lipparini, Europhys. Lett., 40:6 (1997), 667–672 | DOI

[39] F. A. de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Phys. Rev. B, 50:6 (1994), 4248–4251, arXiv: cond-mat/9403075 | DOI | MR

[40] P. Ring, P. Schuck, The Nuclear Many-Body Problem, Springer, Berlin, 1980 | MR

[41] H. Rajbongshi, N. N. Singh, J. Modern Phys., 4 (2013), 1540–1545 | DOI

[42] H. Rajbongshi, N. N. Singh, Acta Phys. Polon. B, 45:8 (2014), 1701–1712 | DOI | MR

[43] S. Habib Mazharimousavi, O. Mustafa, SIGMA, 6 (2010), 088, 8 pp. | DOI | MR | Zbl

[44] O. Mustafa, S. H. Mazharimousavi, Internat. J. Theor. Phys., 46:7 (2007), 1786–1796 | DOI | MR | Zbl

[45] J. W. Dabrowska, A. Khare, U. P. Sukhatme, J. Phys. A: Math. Gen., 21:4 (1988), L195–L200 | DOI | MR