Semiclassical Green's functions of magnetic point contacts
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 301-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for constructing the semiclassical symmetric and antisymmetric Green's functions of magnetic point contacts with uniform magnetization of different ferromagnetic electrodes. The obtained antisymmetric Green's function permits studying the ballistic and diffusion transport of electrons through the magnetic contact with the electrochemical potential inhomogeneity taken into account.
Keywords: semiclassical Green's function, magnetic heterostructure, magnetic point contact, ordinary differential equation.
@article{TMF_2015_183_2_a6,
     author = {N. Kh. Useinov},
     title = {Semiclassical {Green's} functions of magnetic point contacts},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {301--311},
     year = {2015},
     volume = {183},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a6/}
}
TY  - JOUR
AU  - N. Kh. Useinov
TI  - Semiclassical Green's functions of magnetic point contacts
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 301
EP  - 311
VL  - 183
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a6/
LA  - ru
ID  - TMF_2015_183_2_a6
ER  - 
%0 Journal Article
%A N. Kh. Useinov
%T Semiclassical Green's functions of magnetic point contacts
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 301-311
%V 183
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a6/
%G ru
%F TMF_2015_183_2_a6
N. Kh. Useinov. Semiclassical Green's functions of magnetic point contacts. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 301-311. http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a6/

[1] J. Rammer, H. Smith, Rev. Modern Phys., 58:2 (1986), 323–359 | DOI | MR

[2] A. V. Zaitsev, ZhETF, 86:5 (1984), 1742–1758

[3] C. Heide, R. Elliott, N. S. Wingreen, Phys. Rev. B, 59:6 (1999), 4287–4304 | DOI

[4] L. R. Tagirov, B. P. Vodopyanov, K. B. Efetov, Phys. Rev. B, 63:10 (2001), 104428, 4 pp., arXiv: cond-mat/0207648 | DOI

[5] M. Ye. Zhuravlev, H. O. Lutz, A. V. Vedyayev, Phys. Rev. B, 63:17 (2001), 174409, 7 pp. | DOI

[6] M. Ye. Zhuravlev, E. Y. Tsymbal, S. S. Jaswal, A. V. Vedyayev, B. Dieny, Appl. Phys. Lett., 83:17 (2003), 3534–3536 | DOI

[7] A. N. Useinov, R. G. Deminov, L. R. Tagirov, G. Pan, J. Phys.: Condens. Matter, 19:19 (2007), 196215, 10 pp., arXiv: 0706.0266 | DOI

[8] L. R. Tagirov, N. García, Superlattices and Microstructures, 41:2–3 (2007), 152–162 | DOI

[9] N. Kh. Useinov, FTT, 51:3 (2009), 508–513 | DOI

[10] A. N. Useinov, L. R. Tagirov, R. G. Deminov, N. Kh. Useinov, Uchenye zapiski Kazansk. gos. un-ta. Ser. Fiz.-matem. nauki, 149:3 (2007), 5–30

[11] L. R. Tagirov, B. P. Vodopyanov, R. G. Deminov, A. N. Useinov, Uchenye zapiski Kazansk. gos. un-ta. Ser. Fiz.-matem. nauki, 147:2 (2005), 42–51

[12] A. N. Useinov, J. Kosel, N. Kh. Useinov, L. R. Tagirov, Phys. Rev. B., 84:8 (2011), 085424, 8 pp. | DOI

[13] R. G. Deminov, N. Kh. Useinov, L. R. Tagirov, Magnetic Resonance in Solids. Electron. J., 16:2 (2014), 14209, 9 pp. | MR