Differential invariants and operators of invariant differentiation of the~projectable action of Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 202-221
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the relation between operators of invariant differentiation and
invariant operators on orbits of Lie group actions. We propose a new
effective method for finding differential invariants and operators of
invariant differentiation and present examples.
Keywords:
group analysis of differential equations, differential invariant, operator of invariant differentiation, invariant operator.
@article{TMF_2015_183_2_a2,
author = {M. M. Goncharovskiy and I. V. Shirokov},
title = {Differential invariants and operators of invariant differentiation of the~projectable action of {Lie} groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {202--221},
publisher = {mathdoc},
volume = {183},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a2/}
}
TY - JOUR AU - M. M. Goncharovskiy AU - I. V. Shirokov TI - Differential invariants and operators of invariant differentiation of the~projectable action of Lie groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2015 SP - 202 EP - 221 VL - 183 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a2/ LA - ru ID - TMF_2015_183_2_a2 ER -
%0 Journal Article %A M. M. Goncharovskiy %A I. V. Shirokov %T Differential invariants and operators of invariant differentiation of the~projectable action of Lie groups %J Teoretičeskaâ i matematičeskaâ fizika %D 2015 %P 202-221 %V 183 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a2/ %G ru %F TMF_2015_183_2_a2
M. M. Goncharovskiy; I. V. Shirokov. Differential invariants and operators of invariant differentiation of the~projectable action of Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 202-221. http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a2/