Differential invariants and operators of invariant differentiation of the projectable action of Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 202-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the relation between operators of invariant differentiation and invariant operators on orbits of Lie group actions. We propose a new effective method for finding differential invariants and operators of invariant differentiation and present examples.
Keywords: group analysis of differential equations, differential invariant, operator of invariant differentiation, invariant operator.
@article{TMF_2015_183_2_a2,
     author = {M. M. Goncharovskiy and I. V. Shirokov},
     title = {Differential invariants and operators of invariant differentiation of the~projectable action of {Lie} groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {202--221},
     year = {2015},
     volume = {183},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a2/}
}
TY  - JOUR
AU  - M. M. Goncharovskiy
AU  - I. V. Shirokov
TI  - Differential invariants and operators of invariant differentiation of the projectable action of Lie groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 202
EP  - 221
VL  - 183
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a2/
LA  - ru
ID  - TMF_2015_183_2_a2
ER  - 
%0 Journal Article
%A M. M. Goncharovskiy
%A I. V. Shirokov
%T Differential invariants and operators of invariant differentiation of the projectable action of Lie groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 202-221
%V 183
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a2/
%G ru
%F TMF_2015_183_2_a2
M. M. Goncharovskiy; I. V. Shirokov. Differential invariants and operators of invariant differentiation of the projectable action of Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 202-221. http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a2/

[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | Zbl

[3] N. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | MR | Zbl

[4] A. Tresse, Acta Math., 18:1 (1894), 1–88 | DOI | MR

[5] R. E. Popovich, V. N. Boiko, Vestn. SamGU, 4:18 (2000), 49–56 | MR | Zbl

[6] A. P. Chupakhin, Commun. Nonlinear Sci. Numer. Simul., 9:1 (2004), 25–33 | DOI | MR | Zbl

[7] A. M. Vinogradov, M. Marvan, V. A. Yumaguzhin, Dokl. RAN, 405:3 (2005), 299–301 | MR | Zbl

[8] N. V. Lyubashevskaya, A. P. Chupakhin, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2009, no. 2, 52–62

[9] V. A. Yumaguzhin, Acta Appl. Math., 109:1 (2010), 283–313 | DOI | MR | Zbl

[10] P. J. Olver, J. Math. Anal. Appl., 333:1 (2007), 450–471 | DOI | MR | Zbl

[11] P. J. Olver, “Differential invariant algebras”, Symmetries and Related Topics in Differential and Difference Equations, Contemporary Mathematics, 549, eds. D. Blázquez-Sanz, J. J. Morales-Ruiz, J. R. Lombardero, AMS, Providence, RI, 2011, 95–121 | DOI | MR | Zbl

[12] J. Cheh, P. J. Olver, J. Pohjanpelto, Found. Comput. Math., 8:4 (2008), 501–532 | DOI | MR | Zbl

[13] P. J. Olver, “Recent advances in the theory and application of Lie pseudo-groups”, XVIII International Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1260, eds. M. Asorey, J. Clemente-Gallardo , E. Martinez, J. F. Carinena, AIP, Melville, NY, 2010, 35–63 | DOI | MR | Zbl

[14] E. M. Dos Santos Cardoso-Bihlo, “Differential invariants for the Korteweg–de Vries equation”, Group Analysis of Differential Equations and Integrable Systems (Protaras, Cyprus, June 17–21, 2012), University of Cyprus, Nicosia, 2013, 71–79, arXiv: 1307.4452 | MR | Zbl

[15] I. V. Shirokov, Sib. matem. zhurn., 48:6 (2007), 1405–1421 | DOI | MR | Zbl

[16] F. R. Gantmakher, Teoriya matrits, M., Nauka, 1988 | MR

[17] I. V. Shirokov, Izvestiya vuzov. Fizika, 6 (1997), 25–32 | DOI

[18] A. A. Magazev, V. V. Mikheyev, I. V. Shirokov, Evaluation of composition function along with invariant vector fields on Lie group using structural constants of corresponding Lie algebra, arXiv: 1312.0362

[19] I. V. Shirokov, TMF, 126:3 (2001), 393–408 | DOI | DOI | MR | Zbl

[20] I. V. Shirokov, $K$-orbity, garmonicheskii analiz na odnorodnykh prostranstvakh i integrirovanie differentsialnykh uravnenii, OmGU, Omsk, 1998

[21] D. V. Galtsov, Chastitsy i polya v okrestnosti chernykh dyr, Izd-vo MGU, M., 1986

[22] S. P. Baranovskii, I. V. Shirokov, TMF, 135:1 (2003), 70–81 | DOI | DOI | MR | Zbl