Finite-dimensional representations of the elliptic modular double
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 177-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the kernel space of an integral operator $\mathrm M(g)$ depending on the "spin" $g$ and describing an elliptic Fourier transformation. The operator $\mathrm M(g)$ is an intertwiner for the elliptic modular double formed from a pair of Sklyanin algebras with the parameters $\eta$ and $\tau$, $\operatorname{Im}\tau>0$, $\operatorname{Im}\eta>0$. For two-dimensional lattices $g=n\eta+m\tau/2$ and $g=1/2+n\eta+m\tau/2$ with incommensurate $1,2\eta,\tau$ and integers $n,m>0$, the operator $\mathrm M(g)$ has a finite-dimensional kernel that consists of the products of theta functions with two different modular parameters and is invariant under the action of generators of the elliptic modular double.
Keywords: Yang–Baxter equation, elliptic modular double, elliptic hypergeometric function.
@article{TMF_2015_183_2_a1,
     author = {S. \`E. Derkachev and V. P. Spiridonov},
     title = {Finite-dimensional representations of the~elliptic modular double},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--201},
     year = {2015},
     volume = {183},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a1/}
}
TY  - JOUR
AU  - S. È. Derkachev
AU  - V. P. Spiridonov
TI  - Finite-dimensional representations of the elliptic modular double
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 177
EP  - 201
VL  - 183
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a1/
LA  - ru
ID  - TMF_2015_183_2_a1
ER  - 
%0 Journal Article
%A S. È. Derkachev
%A V. P. Spiridonov
%T Finite-dimensional representations of the elliptic modular double
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 177-201
%V 183
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a1/
%G ru
%F TMF_2015_183_2_a1
S. È. Derkachev; V. P. Spiridonov. Finite-dimensional representations of the elliptic modular double. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 177-201. http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a1/

[1] L. D. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato (Dijon, France, 5–8 September, 1999), v. 1, Mathematical Physics Studies, 21, eds. G. Dito, D. Sternheimer, Kluwer, Dordrecht, 2000, 149–156 | MR | Zbl

[2] B. Ponsot, J. Teschner, Commun. Math. Phys., 224:3 (2001), 613–655, arXiv: math/0007097 | DOI | MR

[3] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, Commun. Math. Phys., 225:3 (2002), 573–609, arXiv: hep-th/0102180 | DOI | MR | Zbl

[4] A. G. Bytsko, J. Teschner, Commun. Math. Phys., 240:1–2 (2003), 171–196, arXiv: math/0208191 | DOI | MR | Zbl

[5] F. J. van de Bult, Adv. Math., 204:2 (2006), 539–571 | DOI | MR | Zbl

[6] L D. Faddeev, Funkts. analiz i ego pril., 42:4, 98–104 | DOI | DOI | MR | Zbl

[7] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[8] M. Jimbo (ed.), Yang–Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics, 10, World Sci., Singapore, 1990 | DOI | MR | Zbl

[9] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5 (1979), 13–63 | DOI | MR

[10] E. K. Sklyanin, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | DOI | MR | Zbl

[11] E. K. Sklyanin, Funkts. analiz i ego pril., 17:4 (1983), 34–48 | DOI | MR | Zbl

[12] S. E. Derkachev, V. P. Spiridonov, UMN, 68:6(414) (2013), 59–106, arXiv: 1205.3520 | DOI | DOI | MR | Zbl

[13] V. P. Spiridonov, Algebra i analiz, 20:5 (2008), 155–185, arXiv: 0801.4137 | DOI | MR | Zbl

[14] V. P. Spiridonov, TMF, 139:1 (2004), 104–111, arXiv: math/0312502 | DOI | DOI | MR | Zbl

[15] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[16] V. P. Spiridonov, S. O. Warnaar, Adv. Math., 207:1 (2006), 91–132 | DOI | MR | Zbl

[17] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Obobschennye funktsii, v. 5, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatlit, M., 1962 | MR | MR | Zbl | Zbl

[18] A. W. Knapp, Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Mathematical Series, 36, Princeton Univ. Press, Princeton, NJ, 1986 | MR | Zbl

[19] S. E. Derkachev, A. N. Manashov, Algebra i analiz, 21:4 (2009), 1–94 | DOI | MR | Zbl

[20] S. È. Derkachev, Zap. nauchn. sem. POMI, 335, 2006, 134–163, arXiv: math.QA/0503396 | DOI | MR

[21] S. Derkachov, D. Karakhanyan, R. Kirschner, Nucl. Phys. B, 785:3 (2007), 263–285, arXiv: hep-th/0703076 | DOI | MR | Zbl

[22] V. P. Spiridonov, UMN, 56:1(337) (2001), 181–182 | DOI | DOI | MR | Zbl

[23] D. Chicherin, S. Derkachov, D. Karakhanyan, R. Kirschner, Nucl. Phys. B, 868:3 (2013), 652–683, arXiv: 1211.2965 | DOI | MR | Zbl

[24] A. Zabrodin, Internat. Math. Res. Not., 11 (1999), 589–614 | DOI | MR | Zbl

[25] E. Rains, S. Ruijsenaars, Commun. Math. Phys., 320:3 (2013), 851–889, arXiv: 1203.0042 | DOI | MR | Zbl

[26] H. Rosengren, Ramanujan J., 13:1–3 (2007), 131–166 | DOI | MR | Zbl

[27] H. Rosengren, Internat. Math. Res. Not., 60 (2004), 3207–3232 | DOI | MR | Zbl

[28] T. Takebe, J. Phys. A: Math. Gen., 28:23 (1995), 6675–6706 | DOI | MR | Zbl

[29] V. P. Spiridonov, Algebra i analiz, 15:6 (2003), 161–215, arXiv: math/0303205 | DOI | MR | Zbl