Finite-dimensional representations of the~elliptic modular double
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 177-201

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the kernel space of an integral operator $\mathrm M(g)$ depending on the "spin" $g$ and describing an elliptic Fourier transformation. The operator $\mathrm M(g)$ is an intertwiner for the elliptic modular double formed from a pair of Sklyanin algebras with the parameters $\eta$ and $\tau$, $\operatorname{Im}\tau>0$, $\operatorname{Im}\eta>0$. For two-dimensional lattices $g=n\eta+m\tau/2$ and $g=1/2+n\eta+m\tau/2$ with incommensurate $1,2\eta,\tau$ and integers $n,m>0$, the operator $\mathrm M(g)$ has a finite-dimensional kernel that consists of the products of theta functions with two different modular parameters and is invariant under the action of generators of the elliptic modular double.
Keywords: Yang–Baxter equation, elliptic modular double, elliptic hypergeometric function.
@article{TMF_2015_183_2_a1,
     author = {S. \`E. Derkachev and V. P. Spiridonov},
     title = {Finite-dimensional representations of the~elliptic modular double},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--201},
     publisher = {mathdoc},
     volume = {183},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a1/}
}
TY  - JOUR
AU  - S. È. Derkachev
AU  - V. P. Spiridonov
TI  - Finite-dimensional representations of the~elliptic modular double
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 177
EP  - 201
VL  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a1/
LA  - ru
ID  - TMF_2015_183_2_a1
ER  - 
%0 Journal Article
%A S. È. Derkachev
%A V. P. Spiridonov
%T Finite-dimensional representations of the~elliptic modular double
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 177-201
%V 183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a1/
%G ru
%F TMF_2015_183_2_a1
S. È. Derkachev; V. P. Spiridonov. Finite-dimensional representations of the~elliptic modular double. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 177-201. http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a1/