New approach to the quantization of the Yang–Mills field
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 163-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review papers on a new method for quantizing the Yang–Mills field applicable both in perturbation theory and beyond it. We show that in the modified formulation of the Yang–Mills theory leading to a formal perturbation theory that coincides with the standard one, there exist soliton solutions of the classical equations of motion.
Keywords: non-Abelian gauge invariance, quantization nonuniqueness
Mots-clés : quantization, soliton.
@article{TMF_2015_183_2_a0,
     author = {A. A. Slavnov},
     title = {New approach to the~quantization of {the~Yang{\textendash}Mills} field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--176},
     year = {2015},
     volume = {183},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a0/}
}
TY  - JOUR
AU  - A. A. Slavnov
TI  - New approach to the quantization of the Yang–Mills field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 163
EP  - 176
VL  - 183
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a0/
LA  - ru
ID  - TMF_2015_183_2_a0
ER  - 
%0 Journal Article
%A A. A. Slavnov
%T New approach to the quantization of the Yang–Mills field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 163-176
%V 183
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a0/
%G ru
%F TMF_2015_183_2_a0
A. A. Slavnov. New approach to the quantization of the Yang–Mills field. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 2, pp. 163-176. http://geodesic.mathdoc.fr/item/TMF_2015_183_2_a0/

[1] C. N. Yang, R. L. Mills, Phys. Rev., 96:1 (1954), 191–195 | DOI | Zbl

[2] L. D. Faddeev, V. N. Popov, Phys. Lett. B, 25:1 (1967), 29–30 | DOI

[3] B. S. DeWitt, Phys. Rev., 160:5 (1967), 1113–1148 ; 162:5 (1962), 1195–1239 | DOI | Zbl | DOI

[4] G. Cursi, F. Ferrari, IL Nuovo Cimento A Ser. 11, 35:3 (1976), 273–279 | DOI

[5] T. Kugo, I. Ojima, Progr. Theor. Phys. Suppl., 66:1 (1979), 1–130 | DOI | MR

[6] R. Brout, F. Englert, Phys. Rev. Lett., 13:9 (1964), 321–323 | DOI | MR

[7] P. W. Higgs, Phys. Lett., 12:2 (1964), 132–133 | DOI

[8] T. W. B. Kibble, Phys. Rev., 155:5 (1967), 1554–1561 | DOI

[9] V. N. Gribov, Nucl. Phys. B, 139:1–2 (1978), 1–19 | DOI | MR

[10] I. Singer, Commun. Math. Phys., 60:1 (1978), 7–12 | DOI | MR | Zbl

[11] D. Zwanziger, Nucl. Phys. B, 321:3 (1989), 591–604 | DOI | MR

[12] G. 't Hooft, Nucl. Phys. B, 79:2 (1974), 276–284 | DOI

[13] A. M. Polyakov, Pisma v ZhETF, 20:6 (1974), 430–433

[14] A. A. Slavnov, JHEP, 08 (2008), 047, 11 pp., arXiv: 0807.1795 | DOI | MR

[15] A. A. Slavnov, TMF, 161:2 (2009), 204–211 | DOI | DOI | MR | Zbl

[16] A. A. Slavnov, Tr. MIAN, 272 (2011), 246–255 | DOI | MR | Zbl

[17] A. Quadri, A. A. Slavnov, JHEP, 07 (2010), 087, 22 pp., arXiv: 1002.2490 | DOI | MR

[18] A. A. Slavnov, TMF, 181:1 (2014), 200–205 | DOI | DOI | MR | Zbl

[19] S. Coleman, Commun. Math. Phys., 55:2 (1977), 113–116 | DOI | MR | Zbl

[20] S. Deser, Phys. Lett. B, 64:4 (1976), 463–464 | DOI

[21] H. Pagels, Phys. Lett. B, 68:5 (1977), 466 | DOI | MR

[22] A. A. Slavnov, Solitons in the modified Yang–Mills theory, arXiv: 1406.7724

[23] B. Julia, A. Zee, Phys. Rev. D, 11:8 (1975), 2227–2232 | DOI

[24] M. K. Prasad, C. M. Sommerfield, Phys. Rev. Lett., 35:12 (1975), 760–762 | DOI

[25] E. B. Bogomolnyi, YaF, 24:4 (1976), 861–870 | MR