Integral of motion in general relativity and the effect of accumulating excessive internal energy of a body under gravitational contraction
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 152-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that under gravitational contraction of a spherical body, its internal energy increases infinitely as the body radius approaches $GM/c^2$, which leads to a negative mass defect and unavoidably to an explosion process with ejection of part of the body mass because the spherical compression is unstable. This conclusion follows exactly from the general theory of relativity in harmonic coordinates.
Keywords: Schwarzschild radius, collapse, energy–momentum pseudotensor, Hilbert causality principle, harmonic coordinates.
@article{TMF_2015_183_1_a9,
     author = {S. S. Gershtein and A. A. Logunov and M. A. Mestvirishvili},
     title = {Integral of motion in general relativity and the~effect of accumulating excessive internal energy of a~body under gravitational contraction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {152--160},
     year = {2015},
     volume = {183},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a9/}
}
TY  - JOUR
AU  - S. S. Gershtein
AU  - A. A. Logunov
AU  - M. A. Mestvirishvili
TI  - Integral of motion in general relativity and the effect of accumulating excessive internal energy of a body under gravitational contraction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 152
EP  - 160
VL  - 183
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a9/
LA  - ru
ID  - TMF_2015_183_1_a9
ER  - 
%0 Journal Article
%A S. S. Gershtein
%A A. A. Logunov
%A M. A. Mestvirishvili
%T Integral of motion in general relativity and the effect of accumulating excessive internal energy of a body under gravitational contraction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 152-160
%V 183
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a9/
%G ru
%F TMF_2015_183_1_a9
S. S. Gershtein; A. A. Logunov; M. A. Mestvirishvili. Integral of motion in general relativity and the effect of accumulating excessive internal energy of a body under gravitational contraction. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 152-160. http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a9/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. II, Teoriya polya, Nauka, M., 2001 | MR | MR | Zbl | Zbl

[2] V. A. Fok, Teoriya prostranstva, vremeni i tyagoteniya, Fizmatlit, M., 1961 | MR | Zbl

[3] D. Gilbert, “Osnovaniya fiziki (vtoroe soobschenie) (1924)”, Perevod Yu. A. Danilova, Izbrannye trudy, v. II, Analiz. Fizika. Problemy. Personalia, Faktorial, M., 1998, 379–398 | DOI

[4] A. A. Logunov, M. A. Mestvirishvili, TMF, 170:3 (2012), 489–496 | DOI | DOI | Zbl

[5] A. A. Logunov, M. A. Mestvirishvili, TMF, 174:2 (2013), 292–302 | DOI | DOI | Zbl

[6] Dzh. L. Sing, Obschaya teoriya otnositelnosti, IL, M., 1963 | MR | Zbl

[7] A. A. Logunov, UFN, 165:2 (1995), 187–203 ; Релятивистская теория гравитации, Наука, М., 2012 | DOI | DOI

[8] A. Einshtein, Sobranie nauchnykh trudov, v. II, Raboty po teorii otnositelnosti 1921–1955 gg., Nauka, M, 1966

[9] R. F. Feinman, F. B. Morinigo, U. Vagner, Feinmanovskie lektsii po gravitatsii, Yanus-K, M., 2000

[10] Ya. B. Zeldovich, I. D. Novikov, Relyativistskaya astrofizika, Nauka, M., 1967

[11] P. A. M. Dirac, Proc. Roy. Soc. Ser. A, 270:1342 (1962), 354–356 | DOI | MR

[12] Yu. Oppengeimer, G. Snaider, “O bezgranichnom gravitatsionnom szhatii”, Albert Einshtein i teoriya gravitatsii, Sb. statei, ed. E. Kuranskii, Mir, M., 1979, 353–361 ; J. R. Oppenheimer, H. Snyder, Phys. Rev., 56:5 (1939), 455-459 | MR | DOI | Zbl

[13] T. W. Marshall, Fields tell matter how to move, arXiv: ; Astrophys. Space Sci., 342:2 (2012), 329–332 1103.6168 | DOI | Zbl

[14] A. Mitra, Astrophys. Space Sci., 332:1 (2011), 43–48 | DOI