Polynomial integrals of motion in dilaton gravity theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 138-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Investigating modern gravity and cosmology models involves a stage of analyzing associated nonlinear dynamical systems. In general, such systems are not integrable, but they often admit additional integrals of motion. Based on features of dynamical systems appearing in the theory of dilaton gravity, we formulate a universal algorithm seeking the integrals of motion polynomial in momentum. Using this algorithm, we investigate the dilaton gravity theories with a single scalar field for the presence of linear and quadratic integrals of motion.
Keywords: gravity, dynamical system, integrability, polynomial integral.
@article{TMF_2015_183_1_a8,
     author = {E. A. Davydov},
     title = {Polynomial integrals of motion in dilaton gravity theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {138--151},
     year = {2015},
     volume = {183},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a8/}
}
TY  - JOUR
AU  - E. A. Davydov
TI  - Polynomial integrals of motion in dilaton gravity theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 138
EP  - 151
VL  - 183
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a8/
LA  - ru
ID  - TMF_2015_183_1_a8
ER  - 
%0 Journal Article
%A E. A. Davydov
%T Polynomial integrals of motion in dilaton gravity theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 138-151
%V 183
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a8/
%G ru
%F TMF_2015_183_1_a8
E. A. Davydov. Polynomial integrals of motion in dilaton gravity theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 138-151. http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a8/

[1] P. A. R. Ade, R. W. Aikin, M. Amiri et al. [BICEP2 Collab.], BICEP2 II: Experiment and three-year data set, arXiv: 1403.4302

[2] T. Delubac, J. E. Bautista, N. G. Busca et al., Baryon acoustic oscillations in the Lya forest of BOSS DR11 quasars, arXiv: 1404.1801 | MR

[3] D. K. Hazra, A. Shafieloo, G. F. Smoot, A. A. Starobinsky, JCAP, 08 (2014), 048, arXiv: 1405.2012 | DOI

[4] K. Bamba, S. 'i. Nojiri, S. D. Odintsov, Phys. Lett. B, 737 (2014), 374–378, arXiv: 1406.2417 | DOI | MR | Zbl

[5] R. Kallosh, A. Linde, A. Westphal, Phys. Rev. D, 90:2 (2014), 023534, 12 pp., arXiv: 1405.0270 | DOI

[6] V. Sahni, A. Shafieloo, A. A. Starobinsky, Astrophys. J., 793:2 (2014), L40, arXiv: 1406.2209 | DOI

[7] A. D. Linde, Fizika elementarnykh chastits i inflyatsionnaya kosmologiya, Nauka, M., 1990 ; A. Linde, “Particle physics and inflationary cosmology”, Proceedings of the Fourth Seminar on Quantum Gravity (Moscow, May 25–29, 1987), Contemp. Concepts Phys., 5, eds. M. A. Markov, V. A. Berezin, V. P. Frolov, Word Sci., Singapore, 1988, 736–746, arXiv: hep-th/0503203 | MR | MR

[8] V. Sahni, “Dark matter and dark energy”, The Physics of the Early Universe, Lecture Notes in Physics, 653, ed. E. Papantonopoulos, Springer, Berlin, 2004, 141–179, arXiv: astro-ph/0403324 | DOI | MR

[9] D. V. Gal'tsov, E. A. Davydov, Internat. J. Modern Phys. Conf. Ser., 14 (2012), 316–325, arXiv: 1112.2943 | DOI

[10] A. Maleknejad, M. M. Sheikh-Jabbari, Phys. Lett. B, 723:1–3 (2013), 224–228, arXiv: 1102.1513 | DOI | MR | Zbl

[11] S. Nojiri, S. D. Odintsov, Internat. J. Geom. Meth. Modern Phys., 4:1 (2007), 115–145, arXiv: hep-th/0601213 | DOI | MR | Zbl

[12] S. F. Hassan, R. A. Rosen, JHEP, 07 (2011), 009, 22 pp., arXiv: 1103.6055 | DOI | MR

[13] P. Horava, Phys. Rev. D, 79:8 (2009), 084008, 15 pp., arXiv: 0901.3775 | DOI | MR

[14] A. T. Filippov, TMF, 163:3 (2010), 430–448, arXiv: 1003.0782 | DOI | DOI | MR | Zbl

[15] J. A. Harvey, A. Strominger, “Quantum aspects of black holes”, String Theory and Quantum Gravity'92 (Trieste, Italy, 30 March – 10 April, 1992), eds. J. Harvey, R. Lengo, K. S. Narain, S. Randjbar-Daemi, H. Verlinde, World Sci., Singapore, 1993, 122–?, arXiv: hep-th/9209055 | MR

[16] D. Grumiller, W. Kummer, D. V. Vassilevich, Phys. Rep., 369:4 (2002), 327–430, arXiv: hep-th/0204253 | DOI | MR | Zbl

[17] R. Kallosh, A. Linde, JCAP, 01 (2014), 020, 18 pp., arXiv: 1311.3326 | DOI | MR

[18] E. Uitteker, Analiticheskaya dinamika, Editorial URSS, M., 2004 | MR | Zbl

[19] M. Hénon, C. Heiles, Astronom. J., 69 (1964), 73–79 | DOI | MR

[20] M. Toda, J. Phys. Soc. Japan, 22:2 (1967), 431–436 | DOI

[21] S. C. Mishra, F. Chand, Pramana, 66:3 (2006), 601–607 | DOI

[22] A. V. Tsiganov, J. Phys. A: Math. Gen., 33:41 (2000), 7407–7422, arXiv: nlin/0001053 | DOI | MR | Zbl

[23] C. R. Holt, J. Math. Phys., 23:6 (1982), 1037–1046 | DOI | MR | Zbl

[24] V. V. Kozlov, D. V. Treschëv, Matem. sb., 135(177):1 (1988), 119–138 | DOI | MR | Zbl

[25] A. T. Filippov, TMF, 177:2 (2013), 323–352, arXiv: 1302.6372 | DOI | DOI | Zbl

[26] A. T. Filippov, Modern Phys. Lett. A, 11:21 (1996), 1691–1704, arXiv: ; Internat. J. Modern Phys. A, 12:1 (1997), 13–22, arXiv: hep-th/9605008gr-qc/9612058 | DOI | MR | Zbl | DOI | MR | Zbl

[27] V. De Alfaro, A. T. Filippov, TMF, 153:3 (2007), 422–452, arXiv: hep-th/0612258 | DOI | DOI | MR | Zbl

[28] A. T. Filippov, Integrals of equations for cosmological and static reductions in generalized theories of gravity, arXiv: 1403.6815

[29] A. I. Kostrikin, Yu. I. Manin, Lineinaya algebra i geometriya, Nauka, M., 1986 | MR | MR | Zbl

[30] M. Dubois-Violette, P. W. Michor, Indag. Math. (N. S.), 6:1 (1995), 51–66, arXiv: alg-geom/9401006 | DOI | MR | Zbl

[31] P. Comon, G. Golub, L. H. Lim, B. Mourrain, SIAM J. Matrix Anal. Appl., 30:3 (2008), 1254–1279, arXiv: 0802.1681 | DOI | MR

[32] E. A. Davydov, A. T. Filippov, Gravit. Cosmol., 19:4 (2013), 209–218, arXiv: 1302.6969 | DOI | MR | Zbl

[33] R. Kallosh, A. Linde, D. Roest, Phys. Rev. Lett., 112:1 (2014), 011303, arXiv: 1310.3950 | DOI