Critical opalescence and the true dielectric state in a Coulomb system
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 120-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To study the critical opalescence effect in a two-component Coulomb system consisting of single-type electrons and nuclei, we consider the limit relations for static structure factors and analyze the singularities of the dielectric permittivity. We show that the critical opalescence effect can be observed not only at the critical point corresponding to the gas–liquid phase transition but also near the true dielectric state with zero static conductivity. With the available experimental data taken into account, we assume that the true dielectric state is the limit state of the liquid–liquid phase transition accompanied by sharp variations in the electrical conduction of the substances. We find that if the thermodynamic parameters correspond to the true dielectric state, then the critical opalescence effect can arise in the case where the squared fluctuation in the total number of electrons and nuclei in a two-component Coulomb system becomes infinite, as this occurs at the critical point corresponding to the gas–liquid phase transition.
Keywords: critical opalescence, static structure factor, dielectric permittivity, true dielectric, equilibrium Green's function.
Mots-clés : Coulomb system
@article{TMF_2015_183_1_a7,
     author = {V. B. Bobrov and S. A. Triger},
     title = {Critical opalescence and the~true dielectric state in {a~Coulomb} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {120--137},
     year = {2015},
     volume = {183},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a7/}
}
TY  - JOUR
AU  - V. B. Bobrov
AU  - S. A. Triger
TI  - Critical opalescence and the true dielectric state in a Coulomb system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 120
EP  - 137
VL  - 183
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a7/
LA  - ru
ID  - TMF_2015_183_1_a7
ER  - 
%0 Journal Article
%A V. B. Bobrov
%A S. A. Triger
%T Critical opalescence and the true dielectric state in a Coulomb system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 120-137
%V 183
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a7/
%G ru
%F TMF_2015_183_1_a7
V. B. Bobrov; S. A. Triger. Critical opalescence and the true dielectric state in a Coulomb system. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 120-137. http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a7/

[1] B. Chu, Laser Light Scattering, Akademic Press, New York, 1991

[2] D. I. Ivanov, Critical Behavior of Non-Ideal Systems, Wiley-VHC, Vienheim, 2008 | Zbl

[3] M. V. Smoluchowski, Ann. Phys., 330:2 (1908), 205–226 | DOI

[4] A. Einstein, Ann. Phys., 338:16 (1910), 1275–1298 | DOI | Zbl

[5] P. Résibois, M. De Leener, Classical Kinetic Theory of Fluids, Wiley, New York, 1977

[6] L. S. Ornstein, F. Zernike, Proc. Acad. Sci. Amsterdam, 17 (1914), 793–806

[7] R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York, 1975 | MR | Zbl

[8] J. E. Thomas, P. W. Schmidt, J. Chem. Phys., 39:10 (1963), 2506–2515 | DOI

[9] M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals, Gordon and Breach, Philadelphia, 1991

[10] G. A. Martynov, Fundamental Theory of Liquids. Method of Distribution Functions, Adam Hilger, Bristol, 1992 | MR

[11] G. A. Martynov, UFN, 169:6 (1999), 595–624 | DOI | DOI

[12] L. D. Landau, Phys. Z. Sowjetunion, 11 (1937), 26–35 | Zbl

[13] E. A. Guggenheim, J. Chem. Phys., 13:7 (1945), 253–261 | DOI

[14] X.-G. Wen, Phys. Rev. B, 40:10 (1989), 7387–7390 | DOI

[15] S. S. Jahromi, S. F. Masoudi, M. Kargarian, K. P. Schmidt, Phys. Rev. B , 88:21 (2013), 214411, 8 pp., arXiv: 1308.1407 | DOI

[16] L. Onsager, Phys. Rev., 65:3–4 (1944), 117–149 | DOI | MR | Zbl

[17] E. Ising, Z. Phys., 31:1 (1925), 253–258 | DOI

[18] B. Widom, J. Chem. Phys., 41:6 (1964), 1633–1634 ; 43:11 (1965), 3892–3897 ; 3898–3904 | DOI | MR | DOI | DOI

[19] L. P. Kadanoff, Physics, 2:6 (1966), 263–272 | MR

[20] K. G. Wilson, Phys. Rev. B, 4:9 (1971), 3174–3183 ; 3184–3205 | DOI | Zbl | DOI | Zbl

[21] M. E. Fisher, Rev. Modern Phys., 70:2 (1998), 653–681 | DOI | MR | Zbl

[22] H. E. Stanley, Rev. Modern Phys., 71:2 (1999), S358–S366 | DOI

[23] M. Barmatz, I. Hahn, J. A. Lipa, R. V. Duncan, Rev. Modern Phys., 79:1 (2007), 1–52 | DOI

[24] A. Parola, L. Reatto, Adv. Phys., 44:3 (1995), 211–298 | DOI

[25] G. A. Martynov, TMF, 119:3 (1999), 498–516 ; 156:3 (2008), 454–464 | DOI | DOI | MR | Zbl | DOI | DOI | MR | Zbl

[26] G. A. Martynov, J. Chem. Phys., 129:24 (2008), 244509 ; Phys. Rev. E, 79:3 (2009), 031119, 9 pp. | DOI | DOI

[27] R. Evans, J. R. Henderson, J. Phys.: Cond. Matt., 21:47 (2009), 474220, 11 pp. | DOI

[28] M. E. Fisher, J. Phys.: Cond. Matt., 8:47 (1996), 9103–9110 | DOI

[29] A. A. Likalter, UFN, 43:7 (2000), 831–854 | DOI | DOI

[30] W.-D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems, Plenum, New York, 1986

[31] D. Pines, P. Noziéres, The Theory of Quantum Liquids, Benjamin, New York, 1966

[32] V. B. Bobrov, S. A. Trigger, Phys. Lett. A, 375:16 (2011), 1716–1719 | DOI | Zbl

[33] V. B. Bobrov, J. Phys.: Cond. Matt., 2:13 (1990), 3115–3118 | DOI

[34] V. B. Bobrov, N. I. Klyuchnikov, S. A. Triger, TMF, 89:2 (1991), 263–277 | DOI

[35] V. B. Bobrov, N. I. Klyuchnikov, S. A. Trigger, Physica A: Statist. Mech. Appl., 181:1–2 (1992), 156–172 | DOI

[36] V. B. Bobrov, I. M. Sokolov, S. A. Trigger, Phys. Plasmas, 19:6 (2012), 062101, 8 pp. | DOI

[37] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR

[38] V. B. Bobrov, TMF, 178:3 (2014), 433–448 | DOI | DOI | Zbl

[39] S. Dietrich, A. Haase, Phys. Rep., 260:1–2 (1995), 1–138 | DOI

[40] J. Chihara, J. Phys.: Cond. Matt., 12:3 (2000), 231–248 | DOI

[41] V. B. Bobrov, S. A. Trigger, S. N. Skovorod'ko, Europhys. Lett., 92:1 (2010), 13001, 5 pp. | DOI

[42] F. Evers, A. D. Mirlin, Rev. Modern Phys., 80:4 (2008), 1355–1417 | DOI

[43] V. F. Gantmakher, V. T. Dolgopolov, UFN, 51:1 (2008), 3–24 | DOI | DOI

[44] V. B. Bobrov, V. Ya. Mendeleev, S. A. Triger, G. van Kheist, P. Shram, TBT, 51:4 (2013), 511–519 | DOI | DOI

[45] R. Redmer, B. Holst, F. Hensel (eds.), Metal-to-Nonmetal Transitions, Springer, Berlin, 2010 | Zbl

[46] N. Subramanian, A. F. Goncharov, V. V. Struzhkin, M. Somayazulu, R. J. Hemley, Proc. Natl. Acad. Sci. USA, 108:15 (2011), 6014–6019 | DOI

[47] V. Dzyabura, M. Zaghoo, I. F. Silvera, Proc. Natl. Acad. Sci. USA, 110:20 (2013), 8040–8044 | DOI

[48] V. B. Bobrov, S. A. Trigger, J. Phys. A: Math. Theor., 43:36 (2010), 365002, 11 pp. | DOI | MR | Zbl

[49] V. B. Bobrov, S. A. Triger, TVT, 49:4 (2011), 513–523 | DOI

[50] V. B. Bobrov, Phys. Rev. E, 86:2 (2012), 026401, 4 pp. | DOI

[51] V. B. Bobrov, S. A. Trigger, A. G. Zagorodny, Europhys. Lett., 101:1 (2013), 16002, 5 pp. | DOI

[52] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | MR | Zbl

[53] V. P. Silin, A. A. Rukhadze, Elektromagnitnye svoistva plazmy i plazmopodobnykh sred, Gosatomizdat, M., 1961

[54] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika. Chast 1, Nauka, M., 1976 | MR | Zbl

[55] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 10, Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[56] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR

[57] V. B. Bobrov, S. A. Trigger, A. G. Zagorodny, Phys. Lett. A, 375:2 (2010), 84–87 | DOI | Zbl

[58] V. B. Bobrov, S. A. Trigger, G. J. F. van Heijst, P. P. J. M. Schram, Europhys. Lett., 90:1 (2010), 10003, 4 pp. | DOI

[59] O. V. Dolgov, D. A. Kirzhnitz, E. G. Maksimov, Rev. Modern Phys., 53:1 (1981), 81–93 | DOI | MR