Scattering theory for delta-type potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 105-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the example of the Korteweg–de Vries equation, we consider the problem of extending the applicability of the inverse spectral transform method using delta-type potentials and their Darboux transformations. In this case, the problem of the properties of scattering data reduces to studying explicitly given entire functions of the spectral parameter.
Keywords: inverse spectral problem, additional spectrum, Korteweg–de Vries equation
Mots-clés : second Painlevé equation.
@article{TMF_2015_183_1_a6,
     author = {A. B. Shabat},
     title = {Scattering theory for delta-type potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {105--119},
     year = {2015},
     volume = {183},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a6/}
}
TY  - JOUR
AU  - A. B. Shabat
TI  - Scattering theory for delta-type potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 105
EP  - 119
VL  - 183
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a6/
LA  - ru
ID  - TMF_2015_183_1_a6
ER  - 
%0 Journal Article
%A A. B. Shabat
%T Scattering theory for delta-type potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 105-119
%V 183
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a6/
%G ru
%F TMF_2015_183_1_a6
A. B. Shabat. Scattering theory for delta-type potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 105-119. http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a6/

[1] A. B. Shabat, Funkts. analiz i ego pril., 9:3 (1975), 75–78 | DOI | MR | Zbl

[2] E. Korotyaev, Inverse Probl., 21:1 (2005), 325–341 | DOI | MR | Zbl

[3] A. Ya. Povzner, Matem. sb., 23(65):1, 3–52 | MR

[4] Z. S. Agranovich, V. A. Marchenko, Obratnaya zadacha teorii rasseyaniya, Izd-vo Kharkovskogo un-ta, Kharkov, 1960 | Zbl

[5] M. Sh. Badakhov, O. Yu. Veremeenko, A. B. Shabat, Vladikavkaz. matem. zhurn., 16:4 (2014), 34–40 | MR

[6] A. B. Shabat, TMF, 179:3 (2014), 303–316 | DOI | DOI | Zbl

[7] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl

[8] A. M. Ilin, A. R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009

[9] S. Grudsky, A. Rybkin, Proc. Amer. Math. Soc., 142:6, 2079–2086 | DOI | MR | Zbl

[10] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI | Zbl | Zbl

[11] A. B. Shabat, Dokl. AN SSSR, 211:6 (1973), 1310–1313 | Zbl

[12] S. I. Pohozaev, Nonlinear Anal., 75:12 (2012), 4688–4698 | DOI | MR | Zbl