Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 78-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the eigenvalue problem for the Hartree operator with a small parameter multiplying the nonlinearity. We obtain asymptotic eigenvalues and asymptotic eigenfunctions near the upper boundaries of spectral clusters formed near the energy levels of the unperturbed operator. Near the circle where the solution is localized, the leading term of the expansion is a solution of the two-dimensional oscillator problem.
Keywords: self-consistent field, spectral cluster, asymptotic eigenvalue, asymptotic eigenfunction, two-dimensional oscillator, logarithmic singularity.
@article{TMF_2015_183_1_a4,
     author = {A. V. Pereskokov},
     title = {Asymptotics of {the~Hartree} operator spectrum near the~upper boundaries of spectral clusters: {Asymptotic} solutions localized near a~circle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--89},
     year = {2015},
     volume = {183},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a4/}
}
TY  - JOUR
AU  - A. V. Pereskokov
TI  - Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 78
EP  - 89
VL  - 183
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a4/
LA  - ru
ID  - TMF_2015_183_1_a4
ER  - 
%0 Journal Article
%A A. V. Pereskokov
%T Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 78-89
%V 183
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a4/
%G ru
%F TMF_2015_183_1_a4
A. V. Pereskokov. Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 78-89. http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a4/

[1] N. N. Bogolyubov, Ukrainsk. matem. zhurn., 2:2 (1950), 3–24 | MR | Zbl

[2] C. I. Pekar, Issledovaniya po elektronnoi teorii kristallov, Gostekhizdat, M., 1951

[3] L. P. Pitaevskii, UFN, 168:6 (1998), 641–653 | DOI | DOI

[4] D. R. Khartri, Raschety atomnykh struktur, IL, M., 1960 | MR | Zbl

[5] S. A. Achmanov, R. V. Hocklov, A. P. Suchorukov, “Self-defocusing and self-modulation in nonlinear media”, Laserhandbuch, v. 2, North-Holland, Amsterdam, 1972, 5–108

[6] E. H. Lieb, B. Simon, Commun. Math. Phys., 53:3 (1977), 185–194 | DOI | MR

[7] P. L. Lions, Commun. Math. Phys., 109:1 (1987), 33–97 | DOI | MR | Zbl

[8] M. V. Karasev, Yu. V. Osipov, TMF, 52:2 (1982), 263–269 | DOI | MR

[9] V. D. Lakhno (red.), Vozbuzhdennye polyaronnye sostoyaniya v kondensirovannykh sredakh, ONTI NTsBI AN SSSR, Puschino, 1990

[10] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | MR | Zbl

[11] M. V. Karasev, V. P. Maslov, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 13 (1979), 145–267 | DOI | MR | Zbl

[12] S. I. Chernykh, TMF, 52:3 (1982), 491–494 | DOI | MR

[13] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl

[14] I. V. Simenog, TMF, 30:3 (1977), 408–414 | DOI | MR

[15] M. V. Karasev, Kvantovaya reduktsiya na orbity algebr simmetrii i zadacha Erenfesta, Preprint ITF-87-157R, ITF AN USSR, Kiev, 1987

[16] S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, I. A. Shafarevich, Dokl. RAN, 345:6 (1995), 743–745 | MR | Zbl

[17] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. matem., 65:5 (2001), 33–72 | DOI | DOI | MR | Zbl

[18] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. matem., 65:6 (2001), 57–98 | DOI | DOI | MR | Zbl

[19] A. V. Pereskokov, TMF, 131:3 (2002), 389–406 | DOI | DOI | MR | Zbl

[20] V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, TMF, 150:1 (2007), 26–40 | DOI | DOI | MR | Zbl

[21] A. V. Pereskokov, TMF, 178:1 (2014), 88–106 | DOI | DOI | MR | Zbl

[22] A. V. Pereskokov, Nanostruktury. Matem. fiz. i modelirovanie, 10:1 (2014), 77–112 | MR

[23] A. V. Pereskokov, Vestn. MEI, 2013, no. 6, 180–190

[24] M. V. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. I”, Quantum Algebras and Poisson Geometry in Mathematical Physics, American Mathematical Society Translation Series 2, 216, AMS, Providence, RI, 2005, 1–17 ; Adv. Stud. Contemp. Math., 11:1 (2005), 33–56 ; Russ. J. Math. Phis., 13:2 (2006), 131–150 | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[25] L. Shiff, Kvantovaya mekhanika, IL, M., 1957 | Zbl

[26] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 3, Ellipticheskie i avtomorfnye funktsii, funktsii Lame i Mate, Nauka, M., 1967 | MR | Zbl

[27] G. Segë, Ortogonalnye mnogochleny, Fizmatlit, M., 1962 | MR

[28] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR | MR | Zbl