Casimir effect for a~collection of parallel conducting surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 51-61

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Casimir energy for a system of conducting parallel planes with constant surface conductance and obtain a general expression for the Casimir energy of the systems of two, three, and four planes. For equal separations between the planes, the energy is inversely proportional to the cubed distance between the planes and for low conductance is independent of the Planck constant and the speed of light. For a system of ideally conducting planes, the Casimir energy is the sum of the Casimir energies of pairs of adjacent planes.
Keywords: vacuum polarization, zeta function, quantum field theory.
Mots-clés : Casimir effect
@article{TMF_2015_183_1_a2,
     author = {N. R. Khusnutdinov and R. N. Kashapov},
     title = {Casimir effect for a~collection of parallel conducting surfaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {183},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a2/}
}
TY  - JOUR
AU  - N. R. Khusnutdinov
AU  - R. N. Kashapov
TI  - Casimir effect for a~collection of parallel conducting surfaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 51
EP  - 61
VL  - 183
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a2/
LA  - ru
ID  - TMF_2015_183_1_a2
ER  - 
%0 Journal Article
%A N. R. Khusnutdinov
%A R. N. Kashapov
%T Casimir effect for a~collection of parallel conducting surfaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 51-61
%V 183
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a2/
%G ru
%F TMF_2015_183_1_a2
N. R. Khusnutdinov; R. N. Kashapov. Casimir effect for a~collection of parallel conducting surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 183 (2015) no. 1, pp. 51-61. http://geodesic.mathdoc.fr/item/TMF_2015_183_1_a2/