Kato perturbative expansion in classical mechanics and an explicit expression for the Deprit generator
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 465-499 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the structure of the canonical Poincaré–Lindstedt perturbation series in the Deprit operator formalism and establish its connection to the Kato resolvent expansion. A discussion of invariant definitions for averaging and integrating perturbation operators and their canonical identities reveals a regular pattern in the series for the Deprit generator. This regularity is explained using Kato series and the relation of the perturbation operators to the Laurent coefficients for the resolvent of the Liouville operator. This purely canonical approach systematizes the series and leads to an explicit expression for the Deprit generator in any order of the perturbation theory: $G=-\hat{\pmb{\mathsf S}}_H H_j$, where $\hat{\pmb{\mathsf S}}_H$ is the partial pseudoinverse of the perturbed Liouville operator. The corresponding Kato series provides a reasonably effective computational algorithm. The canonical connection of the perturbed and unperturbed averaging operators allows describing ambiguities in the generator and transformed Hamiltonian, while Gustavson integrals turn out to be insensitive to the normalization style. We use nonperturbative examples for illustration.
Keywords: classical perturbation theory, resolvent, Kato expansion.
Mots-clés : Lie–Deprit transform, Liouvillian
@article{TMF_2015_182_3_a5,
     author = {A. S. Nikolaev},
     title = {Kato perturbative expansion in classical mechanics and an~explicit expression for {the~Deprit} generator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--499},
     year = {2015},
     volume = {182},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a5/}
}
TY  - JOUR
AU  - A. S. Nikolaev
TI  - Kato perturbative expansion in classical mechanics and an explicit expression for the Deprit generator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 465
EP  - 499
VL  - 182
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a5/
LA  - ru
ID  - TMF_2015_182_3_a5
ER  - 
%0 Journal Article
%A A. S. Nikolaev
%T Kato perturbative expansion in classical mechanics and an explicit expression for the Deprit generator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 465-499
%V 182
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a5/
%G ru
%F TMF_2015_182_3_a5
A. S. Nikolaev. Kato perturbative expansion in classical mechanics and an explicit expression for the Deprit generator. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 465-499. http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a5/

[1] J. R. Cary, Phys. Rep., 79:2 (1981), 129–159 | DOI | MR

[2] A. Messia, Kvantovaya mekhanika, 1, Nauka, M., 1978 | MR

[3] A. Puankare, Izbrannye trudy v 3-x t., v. 1, Novye metody nebesnoi mekhaniki, Nauka, M., 1971 | MR

[4] A. Deprit, Celestial Mech., 1:1 (1969), 12–30 | DOI | MR | Zbl

[5] A. J. Dragt, J. M. Finn, J. Math. Phys., 17:12 (1976), 2215–2227 | DOI | MR | Zbl

[6] J. H. Van Vleck, Phys. Rev., 33:4 (1929), 467–506 | DOI | Zbl

[7] I. Shavitt, L. T. Redmon, J. Chem. Phys., 73:11 (1980), 5711–5717 | DOI | MR

[8] D. J. Klein, J. Chem. Phys., 61:3 (1974), 786–798 | DOI | MR

[9] D. D. Birkgof, Dinamicheskie sistemy, RKhD, Izhevsk, 1999 | MR

[10] F. G. Gustavson, Astron. J., 71 (1966), 670 | DOI

[11] M. Degli Esposti, S. Graffi, J. Herczynski, Ann. Phys., 209:2 (1991), 364–392 | DOI | MR | Zbl

[12] A. S. Nikolaev, J. Math. Phys., 37:6 (1996), 2643–2661 | DOI | MR | Zbl

[13] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[14] H. Spohn, Phys. A: Statist. Mech. Appl., 80:4 (1975), 323–338 | DOI | MR

[15] A. N. Kolmogorov, Dokl. AN SSSR, 93 (1953), 763–766 | MR | Zbl

[16] V. I. Arnold, UMN, 18:6(114) (1963), 91–192 | DOI | MR | Zbl

[17] S. Ferraz-Mello, Canonical Perturbation Theories: Degenerate Systems and Resonance, Springer, Berlin, 2007 | Zbl

[18] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, Mir, M., 1978 | MR | Zbl

[19] A. S. Nikolaev, Kato perturbation expansion in classical mechanics and an explicit expression for a Deprit generator, 2015 http://andreysnikolaev.wordpress.com/demo

[20] J. Kuipers, T. Ueda, J. A. M. Vermaseren, J. Vollinga, Comput. Phys. Commun., 184:5 (2013), 1453–1467, arXiv: 1203.6543 | DOI | Zbl

[21] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR | Zbl

[22] A. Giorgilli, On the representation of maps by lie transforms, arXiv: 1211.5674

[23] P. V. Koseleff, Celestial Mech. Dynam. Astron., 58:1 (1994), 17–36 | DOI | MR

[24] G. Hori, J. Japan Astron. Soc., 18 (1966), 287

[25] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR

[26] Yu. A. Mitropolskii, Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971 | MR

[27] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Gostekhizdat, M., 1955 | MR

[28] J. A. Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Springer, New York, 2007 | MR | Zbl

[29] K. O. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969 | Zbl

[30] R. Cushman, “Normal form for Hamiltonian vectorfields with periodic flow”, Differential Geometric Methods in Mathematical Physics (Jerusalem, August 5–11, 1982), Mathematical Physics Studies, 6, ed. S. Sternberg, Reidel Publ., Dordrecht, Boston, Lancaster, 1984, 125–144 | MR | Zbl

[31] M. Avendaño Camacho, Y. M. Vorobiev, Russ. J. Math. Phys., 18 (2011), 243–257 | DOI | MR | Zbl

[32] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR | MR | Zbl | Zbl

[33] Yu. A. Mitropolskii, A. K. Lopatin, Teoretiko-gruppovoi podkhod v asimptoticheskikh metodakh nelineinoi mekhaniki, Naukova dumka, Kiev, 1988 | MR | Zbl

[34] V. N. Bogaevskii, A. Ya. Povzner, Algebraicheskie metody v nelineinoi teorii vozmuschenii, Nauka, M., 1987 | MR

[35] V. F. Zhuravlev, PMM, 66:3 (2002), 356–365 | MR | Zbl

[36] J. Awrejcewicz, A. G. Petrov, Nonlinear Dynam., 48:1–2 (2007), 185–197 | DOI | MR | Zbl

[37] A. Kh. Naife, Metody vozmuschenii, Mir, M., 1976 | MR | MR | Zbl

[38] G. E. O. Dzhakalya, Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979 | MR | Zbl

[39] Yu. K. Mozer, UMN, 24:2(146) (1969), 165–211 | MR

[40] A. S. Nikolaev, J. Phys. A: Math. Gen., 28:15 (1995), 4407–4414 | DOI | MR | Zbl

[41] E. L. Burshtein, L. S. Solovev, Dokl. AN SSSR, 139:4 (1961), 855–858

[42] H. Primas, Rev. Modern Phys., 35:3 (1963), 710–711 | DOI | MR

[43] Vl. G. Tyuterev, V. I. Perevalvo, Chem. Phys. Lett., 74:3 (1980), 494–502 | DOI

[44] H. R. Jauslin, S. Guérin, S. Thomas, Phys. A: Statist. Mech. Appl., 279:1–4 (2000), 432–442 | DOI

[45] A. S. Nikolaev, “Razlozhenie Kato v teorii vozmuschenii klassicheskoi mekhaniki”, Trudy Mezhdunarodnoi konferentsii po fiziko-tekhnicheskoi informatike CPT-2013 (12–19 maya 2013\;g., Larnaka, Kipr), ed. S. V. Klimenko, IFTI, Protvino, 2013, 1–12

[46] M. Vittot, “A simple and compact presentation of Birkhoff series”, Nonlinear Evolution and Chaotic Phenomena (Noto, June 8–19, 1987), NATO Advanced Science Institutes Series B, 176, eds. G. Gallavotti, P. F. Zweifel, Plenum Press, New York, 1988, 173–183 | DOI | MR

[47] G. Contopoulos, C. Efthymiopoulos, A. Giorgilli, J. Phys. A: Math. Gen., 36:22 (2003), 8639–8660 | DOI | MR | Zbl

[48] C. Jaffe, W. P. Reinhardt, J. Chem. Phys., 77:10 (1982), 5191–5203 | DOI | MR

[49] D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Berlin, 2010 | MR | Zbl

[50] L. H. Eliasson, Math. Phys. Electronic J., 2 (1996), 4, 33 pp. | MR | Zbl

[51] G. Gallavotti, Rev. Math. Phys., 6:3 (1994), 343–411 | DOI | MR | Zbl

[52] A. Kiper, Math. Comp., 43:67 (1984), 247–259 | DOI | MR | Zbl