Estimating the output entropy of a tensor product of two quantum channels
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 453-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of bipartite quantum states, we find a nontrivial lower bound on the entropy gain resulting from the action of a tensor product of the identity channel with an arbitrary channel. We use the obtained result to bound the output entropy of the tensor product of a dephasing channel with an arbitrary channel from below. We characterize phase-damping channels that are particular cases of dephasing channels.
Keywords: quantum channel, bipartite quantum system, von Neumann entropy.
Mots-clés : entanglement
@article{TMF_2015_182_3_a4,
     author = {G. G. Amosov},
     title = {Estimating the~output entropy of a~tensor product of two quantum channels},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {453--464},
     year = {2015},
     volume = {182},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a4/}
}
TY  - JOUR
AU  - G. G. Amosov
TI  - Estimating the output entropy of a tensor product of two quantum channels
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 453
EP  - 464
VL  - 182
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a4/
LA  - ru
ID  - TMF_2015_182_3_a4
ER  - 
%0 Journal Article
%A G. G. Amosov
%T Estimating the output entropy of a tensor product of two quantum channels
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 453-464
%V 182
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a4/
%G ru
%F TMF_2015_182_3_a4
G. G. Amosov. Estimating the output entropy of a tensor product of two quantum channels. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 453-464. http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a4/

[1] R. Alicki, Isotropic quantum spin channels and additivity questions, arXiv: quant-ph/0402080

[2] A. S. Kholevo, Dokl. RAN, 434:2 (2010), 173–174 | DOI | MR

[3] A. S. Holevo, M. E. Shirokov, Commun. Math. Phys., 249:2 (2004), 417–430, arXiv: quant-ph/0306196 | DOI | MR | Zbl

[4] M. B. Ruskai, Some open problems in quantum information theory, arXiv: 0708.1902 | MR

[5] I. Devetak, M. Junge, C. King, M. B. Ruskai, Commun. Math. Phys., 266:1 (2006), 37–63 | DOI | MR | Zbl

[6] I. Devetak, P. W. Shor, Commun. Math. Phys., 256:2 (2005), 287–303, arXiv: quant-ph/0311131 | DOI | MR | Zbl

[7] A. S. Kholevo, TVP, 51:1 (2006), 133–143 | DOI | DOI | MR | Zbl

[8] G. G. Amosov, S. Mancini, Quantum Inf. Comput., 9:7–8 (2009), 594–609 | MR | Zbl

[9] A. S. Kholevo, Probl. peredachi inform., 44:3 (2008), 3–18 | DOI | MR | Zbl

[10] G. G. Amosov, Probl. peredachi inform., 49:3, 32–39 | DOI | Zbl

[11] W. Rudin, Fourier Analysis on Groups, Wiley, New York, 1990 | MR | Zbl