Discrete spectrum of a~noncompact perturbation of a~three-particle Schr\"odinger operator on a~lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 435-452

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of three arbitrary quantum particles on a three-dimensional lattice interacting via attractive pair-contact potentials and attractive potentials of particles at the nearest-neighbor sites. We prove that the Hamiltonian of the corresponding three-particle system has infinitely many eigenvalues. We also list different types of attractive potentials whose eigenvalues can be to the left of the essential spectrum, in a gap in the essential spectrum, and in the essential spectrum of the considered operator.
Keywords: three-particle system on a lattice, Schrödinger operator, asymptotic number of eigenvalues, infinitely many eigenvalues in a gap in the essential spectrum, infinitely many eigenvalues in the essential spectrum.
@article{TMF_2015_182_3_a3,
     author = {M. I. Muminov and N. M. Aliev},
     title = {Discrete spectrum of a~noncompact perturbation of a~three-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {435--452},
     publisher = {mathdoc},
     volume = {182},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a3/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - N. M. Aliev
TI  - Discrete spectrum of a~noncompact perturbation of a~three-particle Schr\"odinger operator on a~lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 435
EP  - 452
VL  - 182
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a3/
LA  - ru
ID  - TMF_2015_182_3_a3
ER  - 
%0 Journal Article
%A M. I. Muminov
%A N. M. Aliev
%T Discrete spectrum of a~noncompact perturbation of a~three-particle Schr\"odinger operator on a~lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 435-452
%V 182
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a3/
%G ru
%F TMF_2015_182_3_a3
M. I. Muminov; N. M. Aliev. Discrete spectrum of a~noncompact perturbation of a~three-particle Schr\"odinger operator on a~lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 435-452. http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a3/