Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 435-452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a system of three arbitrary quantum particles on a three-dimensional lattice interacting via attractive pair-contact potentials and attractive potentials of particles at the nearest-neighbor sites. We prove that the Hamiltonian of the corresponding three-particle system has infinitely many eigenvalues. We also list different types of attractive potentials whose eigenvalues can be to the left of the essential spectrum, in a gap in the essential spectrum, and in the essential spectrum of the considered operator.
Keywords: three-particle system on a lattice, Schrödinger operator, asymptotic number of eigenvalues, infinitely many eigenvalues in a gap in the essential spectrum, infinitely many eigenvalues in the essential spectrum.
@article{TMF_2015_182_3_a3,
     author = {M. I. Muminov and N. M. Aliev},
     title = {Discrete spectrum of a~noncompact perturbation of a~three-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {435--452},
     year = {2015},
     volume = {182},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a3/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - N. M. Aliev
TI  - Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 435
EP  - 452
VL  - 182
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a3/
LA  - ru
ID  - TMF_2015_182_3_a3
ER  - 
%0 Journal Article
%A M. I. Muminov
%A N. M. Aliev
%T Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 435-452
%V 182
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a3/
%G ru
%F TMF_2015_182_3_a3
M. I. Muminov; N. M. Aliev. Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 435-452. http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a3/

[1] V. N. Efimov, YaF, 12:5 (1970), 1080–1091

[2] R. D. Amado, J. V. Noble, Phys. Rev. D, 5:8 (1972), 1992–2002 | DOI

[3] S. P. Mepkupev, L. D. Faddeev, Kvantovaya teopiya passeyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[4] A. V. Sobolev, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[5] H. Tamura, Nagoya Math. J., 130 (1993), 55–83 | DOI | MR | Zbl

[6] S. N. Lakaev, Z. E. Muminov, Funkts. analiz i ego pril., 37:3 (2003), 80–84 | DOI | DOI | MR | Zbl

[7] Zh. I. Abdullaev, S. N. Lakaev, TMF, 136:2 (2003), 231–245 | DOI | DOI | MR | Zbl

[8] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl

[9] S. N. Lakaev, M. E. Muminov, TMF, 135:3 (2003), 478–503 | DOI | DOI | MR | Zbl

[10] G. M. Zhislin, Tr. MMO, 9, 1960, 81–120 | MR | Zbl

[11] M. E. Muminov, TMF, 159:2 (2009), 299–317 | DOI | DOI | MR | Zbl

[12] M. E. Muminov, TMF, 164:1 (2010), 46–61 | DOI | DOI | MR | Zbl

[13] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Math. Nachr., 280:7 (2007), 699–716 | DOI | MR | Zbl

[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[15] M. E. Muminov, A. M. Khurramov, TMF, 177:3 (2013), 482–496 | DOI | DOI