Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 373-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is a continuation of research on a first-order nonlinear differential equation applied in the overshunted model of the Josephson junction. The approach is based on the relation between this equation and the double confluent Heun equation, which is a second-order linear homogeneous equation with two irregular singular points. We describe the conditions on the equation parameters under which its general solution is an analytic function on the Riemann sphere except at $0$ and $\infty$. We construct an explicit basis of the solution space. One of the functions in this basis is regular everywhere except $0$, and the other is regular everywhere except $\infty$. We show that in the framework of the RSJ model of Josephson junction dynamics, the described situation corresponds to the condition that the Shapiro step vanishes if all the solutions of the double confluent Heun equation are single-valued on the Riemann sphere without $0$ and $\infty$.
Mots-clés : double confluent Heun equation
Keywords: holomorphic solution, dynamical system on a torus with the identical Poincaré map.
@article{TMF_2015_182_3_a1,
     author = {V. M. Buchstaber and S. I. Tertychnyi},
     title = {Holomorphic solutions of the~double confluent {Heun} equation associated with {the~RSJ} model of {the~Josephson} junction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--404},
     year = {2015},
     volume = {182},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. I. Tertychnyi
TI  - Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 373
EP  - 404
VL  - 182
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a1/
LA  - ru
ID  - TMF_2015_182_3_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. I. Tertychnyi
%T Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 373-404
%V 182
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a1/
%G ru
%F TMF_2015_182_3_a1
V. M. Buchstaber; S. I. Tertychnyi. Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 3, pp. 373-404. http://geodesic.mathdoc.fr/item/TMF_2015_182_3_a1/

[1] V. M. Bukhshtaber, S. I. Tertychnyi, UMN, 69:2(416) (2014), 201–202 | DOI | DOI | MR

[2] R. L. Foote, Rep. Math. Phys., 42:1–2 (1998), 249–271, arXiv: math/9808070 | DOI | MR | Zbl

[3] R. L. Foote, M. Levi, S. Tabachnikov, Amer. Math. Monthly, 120:3 (2013), 199–216, arXiv: 1207.0834 | DOI | MR | Zbl

[4] B. D. Josephson, Phys. Lett., 1:7 (1962), 251–253 | DOI | Zbl

[5] W. C. Stewart, Appl. Phys. Lett., 12:8 (1968), 277–280 | DOI

[6] D. E. McCumber, J. Appl. Phys., 39:7 (1968), 3113–3118 | DOI

[7] A. Barone, Dzh. Paterno, Effekt Dzhozefsona: fizika i primenenie, Mir, M., 1984

[8] V. V. Shmidt, Vvedenie v fiziku sverkhprovodnikov, MSNMO, M., 2000

[9] J. Guckenheimer, Yu. S. Ilyashenko, Moscow Math. J., 1:1 (2001), 27–47 | MR | Zbl

[10] D. Schmidt, G. Wolf, “Double confluent Heun equation”, Heun's Diffrential Equations, ed. A. Ronveaux, Oxford Univ. Press, Oxford, 1995, 129–188 | MR

[11] S. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, “Nevskii dialekt”, SPb., 2002 | MR | Zbl

[12] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, UMN, 67:1(403) (2012), 181–182 | DOI | DOI | MR | Zbl

[13] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, TMF, 162:2 (2010), 254–265 | DOI | DOI | MR | Zbl

[14] A. Klimenko, O. Romaskevich, Moscow Math. J., 14:2 (2014), 367–384 | MR | Zbl

[15] V. M. Buchstaber, O. V. Karpov, S. I. Tertychniy, “Quantum Josephson $D/A$ converter driven by trains of short $2\pi$-pulses”, Abstracts of the II Conference on Precision Electromagnetic Measurements CPEM–2002 (Ottawa, Canada, June 16–21, 2002), ed. U. Feller, IEEE, New York, 2002, 502–503 | DOI

[16] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, UMN, 59:2(356) (2004), 187–188 | DOI | DOI | MR | Zbl

[17] A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, I. V. Schurov, Funkts. analiz i ego pril., 48:4 (2014), 47–64 | DOI | MR | Zbl

[18] Yu. S. Ilyashenko, D. A. Ryzhov, D. A. Filimonov, Funkts. analiz i ego pril., 45:3 (2011), 41–54 | DOI | DOI | MR | Zbl

[19] D. A. Ryzhov, Rezonansnyi zakhvat i spetsialnye ergodicheskie teoremy, Dis. \ldots kand. fiz.-matem. nauk, MGU, M., 2012

[20] S. I. Tertychniy, The modelling of a Josephson junction and Heun polynomials, arXiv: math-ph/0601064

[21] V. M. Bukhshtaber, S. I. Tertychnyi, TMF, 176:2 (2013), 163–188 | DOI | MR

[22] S. I. Tertychniy, Long-term behavior of solutions of the equation $\dot\phi+\sin\phi=f$ with periodic $f$ and the modeling of dynamics of overdamped Josephson junctions, arXiv: math-ph/0512058

[23] S. I. Tertychniy, Electron. J. Differential Equations, 2007:133 (2007), 1–20 | MR

[24] M. Abramowitz, I. A. Stegun (eds.), “Modified Bessel Functions I”, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972 | MR

[25] Dzh. N. Vatson, Teoriya besselevykh funktsii, v. 1, IL, M., 1949 | MR | Zbl