Majorization and additivity for multimode bosonic Gaussian channels
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 338-349
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a multimode extension of the majorization theorem for bosonic Gaussian channels, in particular, giving sufficient conditions under which the Glauber coherent states are the only minimizers for concave functionals of the output state of such a channel. We discuss direct implications of this multimode majorization for the positive solution of the famous additivity problem in the case of Gaussian channels. In particular, we prove the additivity of the output Rényi entropies of arbitrary order $p>1$. Finally, we present an alternative, more direct derivation of a majorization property of the Husimi function established by Lieb and Solovej.
Keywords:
quantum information theory, bosonic Gaussian communication channel, classical capacity, gauge invariance, minimal output entropy, Gaussian optimizer, additivity.
@article{TMF_2015_182_2_a8,
author = {V. Giovannetti and A. S. Holevo and A. Mari},
title = {Majorization and additivity for multimode bosonic {Gaussian} channels},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {338--349},
publisher = {mathdoc},
volume = {182},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a8/}
}
TY - JOUR AU - V. Giovannetti AU - A. S. Holevo AU - A. Mari TI - Majorization and additivity for multimode bosonic Gaussian channels JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2015 SP - 338 EP - 349 VL - 182 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a8/ LA - ru ID - TMF_2015_182_2_a8 ER -
V. Giovannetti; A. S. Holevo; A. Mari. Majorization and additivity for multimode bosonic Gaussian channels. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 338-349. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a8/