Effective-radius approximation in the problem of two-dimensional scattering by a central short-range potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 315-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the role of weakly bound and near-threshold resonance states of a quantum particle in its two-dimensional elastic low-energy scattering. The energies of such states are determined in the effective-radius approximation using the roots of transcendental equations. The same approximation is used to analyze scattering. We obtain and study the explicit low-energy asymptotic forms of all partial phases and cross sections. These asymptotic forms contain energies of weakly bound or near-threshold resonance states.
Keywords: two-dimensional scattering, short-range potential, weakly bound resonance state, near-threshold resonance state.
@article{TMF_2015_182_2_a7,
     author = {V. V. Pupyshev},
     title = {Effective-radius approximation in the~problem of two-dimensional scattering by a~central short-range potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--337},
     year = {2015},
     volume = {182},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a7/}
}
TY  - JOUR
AU  - V. V. Pupyshev
TI  - Effective-radius approximation in the problem of two-dimensional scattering by a central short-range potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 315
EP  - 337
VL  - 182
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a7/
LA  - ru
ID  - TMF_2015_182_2_a7
ER  - 
%0 Journal Article
%A V. V. Pupyshev
%T Effective-radius approximation in the problem of two-dimensional scattering by a central short-range potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 315-337
%V 182
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a7/
%G ru
%F TMF_2015_182_2_a7
V. V. Pupyshev. Effective-radius approximation in the problem of two-dimensional scattering by a central short-range potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 315-337. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a7/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | Zbl

[2] Dzh. Teilor, Teoriya rasseyaniya. Kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1975

[3] V. V. Babikov, Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976 | MR

[4] H. A. Bethe, Phys. Rev., 76:1 (1949), 38–50 | DOI | Zbl

[5] G. F. Drukarev, ZhETF, 80:2 (1981), 537–540

[6] S. A. Rakityansky, N. Elander, J. Phys. A: Math. Theor., 42:22 (2009), 225302, 18 pp. | DOI | MR | Zbl

[7] V. V. Pupyshev, YaF, 76:2 (2013), 199–215 | DOI | DOI

[8] V. V. Pupyshev, YaF, 77:5 (2014), 686–698 | DOI

[9] L. D. Landau, Ya. A. Smorodinskii, ZhETF, 14 (1944), 269–275

[10] V. V. Pupyshev, O. P. Solovtsova, EChAYa, 27:4 (1996), 859–929

[11] V. V. Pupyshev, EChAYa, 28:6 (1997), 1457–1528 | DOI

[12] L. D. Blokhintsev, I. Borbei, E. I. Dolinskii, EChAYa, 8:6 (1977), 1189–1245

[13] L. D. Blokhintsev, V. O. Eremenko, YaF, 71:7 (2008), 1247–1253 | DOI

[14] L. D. Blokhintsev, V. I. Kukulin, A. A. Sakharuk, D. A. Savin, E. V. Kuznetsova, Phys. Rev. C, 48:5 (1993), 2390–2398 | DOI

[15] Yu. V. Orlov, B. F. Irgaziev, L. I. Nikitina, YaF, 73:5 (2010), 787–802

[16] J.–M. Sparenberg, P. Capel, D. Baye, Phys. Rev. C, 81:1 (2010), 011601, 4 pp. | DOI

[17] R. Yarmukhamedov, D. Baye, Phys. Rev. C, 84:2 (2011), 024603, 7 pp. | DOI

[18] L. D. Blokhintsev, YaF, 74:7 (2011), 1008–1012 | DOI

[19] L. D. Blokhintsev, Izv. RAN. Cer. fiz., 76:4 (2012), 481–484 | DOI

[20] L. D. Blokhintsev, D. A. Savin, YaF, 77:3 (2014), 376–386 | DOI

[21] I. Lindkhard, UFN, 99:2 (1969), 249–296 | DOI

[22] A. M. Taratin, EChAYa, 29:5 (1998), 1063–1118 | DOI

[23] P. M. Krasovitskii, N. Zh. Takibaev, Izv. RAN. Ser. fiz., 70:5 (2006), 709–712

[24] Yu. N. Demkov, J. D. Meyer, Eur. Phys. J. B, 42:3 (2004), 361–365 | DOI

[25] O. Chuluunbaatar, A. A. Gusev, V. L. Derbov, P. M. Krassovitskiy, S. I. Vinitsky, YaF, 72:5 (2009), 811–821 | DOI

[26] B. Simon, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR | Zbl

[27] I. R. Lapidus, Am. J. Phys., 50:1 (1982), 45–47 | DOI

[28] P. G. Averbuch, J. Phys. A: Math. Gen., 19:12 (1986), 2325–2335 | DOI | MR

[29] B. J. Verhaar, L. P. H. de Goey, J. P. H. W. van den Eijnde, E. J. D. Vredenbregt, Phys. Rev. A, 32:3 (1985), 1424–1429 | DOI

[30] N. N. Khuri, A. Martin, J.-M. Rishard, T. T. Wu, J. Math. Phys., 50:7 (2009), 072105, 17 pp., arXiv: 0812.4054 | DOI | MR | Zbl

[31] D. Bollé, F. Gesztesy, Phys. Rev. A, 30:3 (1984), 1279–1293 | DOI

[32] S. K. Adhikari, W. G. Gibson, Phys. Rev. A, 46:7 (1992), 3967–3977 | DOI

[33] S. A. Rakityansky, N. Elander, J. Phys. A: Math. Theor., 45:13 (2012), 135209, 28 pp., arXiv: 1201.0172 | DOI | MR | Zbl

[34] V. V. Pupyshev, YaF, 77:5 (2014), 699–710 | DOI

[35] V. V. Pupyshev, TMF, 180:3 (2014), 342–367 | DOI | DOI | Zbl

[36] V. V. Pupyshev, TMF, 179:1 (2014), 102–122 | DOI | DOI | Zbl

[37] M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. B, 41:1 (1990), 327–343 | DOI

[38] M. Klawunn, A. Pikovski, L. Santos, Phys. Rev. A, 82:4 (2010), 044701, 4 pp., arXiv: 1008.2444 | DOI

[39] M. Rosenkrantz, W. Bao, Phys. Rev. A., 84:5 (2011), 050701, 5 pp., arXiv: 1201.6167 | DOI

[40] P. Cladé, C. Ryu, A. Ramanathan, K. Helmerson, W. D. Phillips, Phys. Rev. Lett., 102:17 (2009), 170401, 4 pp., arXiv: 0805.3519 | DOI

[41] L. D. Caar, D. DeMille, R. V. Krems, J. Ye, New J. Phys., 11 (2009), 055049, 87 pp. | DOI