Soliton-like structures on a liquid surface under an ice cover
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 277-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a complete system of equations describing wave propagation in a fluid of finite depth under an ice cover, we prove the existence of soliton-like solutions corresponding to a family of solitary waves of surface level depression. The ice cover is modeled as a Kirchhoff–Love elastic plate and has a significant thickness such that the plate inertia is taken into account in the model formulation. The family of solitary waves is parameterized by the wave propagation velocity, and its existence is proved for velocities that bifurcate from the characteristic velocity of linear waves and are rather close to this velocity. In turn, the solitary waves bifurcate from the rest state and are located in its neighborhood. In other words, we prove the existence of small-amplitude solitary waves of water–ice interface level depression. The proof uses the projection of the sought system of equations onto the center manifold {(}whose dimensionality is two in this case{\rm)} and a further analysis of a finite-dimensional reduced dynamical system on the center manifold.
Keywords: ice cover, solitary wave, center manifold, resolvent estimate.
Mots-clés : bifurcation
@article{TMF_2015_182_2_a5,
     author = {A. T. Il'ichev and V. Ya. Tomashpolskii},
     title = {Soliton-like structures on a~liquid surface under an~ice cover},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {277--293},
     year = {2015},
     volume = {182},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a5/}
}
TY  - JOUR
AU  - A. T. Il'ichev
AU  - V. Ya. Tomashpolskii
TI  - Soliton-like structures on a liquid surface under an ice cover
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 277
EP  - 293
VL  - 182
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a5/
LA  - ru
ID  - TMF_2015_182_2_a5
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%A V. Ya. Tomashpolskii
%T Soliton-like structures on a liquid surface under an ice cover
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 277-293
%V 182
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a5/
%G ru
%F TMF_2015_182_2_a5
A. T. Il'ichev; V. Ya. Tomashpolskii. Soliton-like structures on a liquid surface under an ice cover. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 277-293. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a5/

[1] J. J. Stoker, Water Waves: The Mathematical Theory with Applications, Wiley Interscience, New York, 1957 | DOI | MR

[2] D. G. Duffy, Cold Reg. Sci. Tech., 20:1 (1991), 51–64 | DOI

[3] D. G. Duffy, Cold Reg. Sci. Tech., 24:1 (1996), 29–39 | DOI

[4] A. V. Marchenko, A. Yu. Semenov, Izv. AN SSSR. Ser. Mekh. zhidk. i gaza, 1994, no. 4, 185–189 | Zbl

[5] A. V. Marchenko, E. G. Morozov, S. V. Muzylev, A. S. Shestov, Okeanologiya, 50:1 (2010), 23–31 | DOI | MR

[6] S. V. Muzylev, Okeanologiya, 46:4 (2006), 500–506 | DOI

[7] R. M. S. M. Schulkes, R. J. Hosking, A. D. Sneyd, J. Fluid Mech., 180 (1987), 297–318 | DOI | Zbl

[8] V. A. Squire, Cold Reg. Sci. Tech., 10:1 (1984), 59–68 | DOI

[9] E. O. Tuck, J. Austral. Math. Soc. Ser. B, 23:4 (1982), 403–415 | DOI | MR | Zbl

[10] L. K. Forbes, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR | Zbl

[11] L. K. Forbes, J. Fluid Mech., 188 (1988), 491–508 | DOI | MR | Zbl

[12] I. Bakholdin, A. Il'ichev, Eur. J. Mech. B/Fluids, 23:3 (2003), 291–304 | DOI | MR

[13] A. T. Ilichev, Izv. RAN. Ser. Mekh. zhidk. i gaza, 2000, no. 2, 3–27 | DOI | Zbl

[14] A. T. Ilichev, A. V. Marchenko, Izv. AN SSSR. Ser. Mekh. zhidk. i gaza, 1989, no. 1, 88–95 | DOI | MR | Zbl

[15] A. T. Ilichev, A. V. Marchenko, PMM, 61:2 (1997), 190–201 | DOI | MR | Zbl

[16] A. V. Marchenko, PMM, 52:2 (1988), 230–235 | DOI

[17] A. V. Marchenko, N. R. Sibgatullin, Vestn. Mosk. un-ta. Cer. 1. Matem., mekh., 1986, no. 4, 94–97

[18] A. V. Marchenko, N. R. Sibgatullin, Izv. AN SSSR. Ser. Mekh. zhidk. i gaza, 1987, no. 6, 57–64 | DOI | Zbl

[19] E. Parau, F. Dias, J. Fluid. Mech., 437:1 (2001), 325–336 | DOI | MR | Zbl

[20] L. Brevdo, A. Il'ichev, Z. Angew. Math. Phys., 49:3 (1998), 401–419 | DOI | MR | Zbl

[21] L. Brevdo, A. Il'ichev, Cold Reg. Sci. Tech., 33:1 (2001), 77–89 | DOI

[22] L. Brevdo, A. Il'ichev, Eur. J. Mech. A: Solids, 25:3 (2006), 509–525 | DOI | MR | Zbl

[23] J. Strathdee, W. H. Robinson, E. M. Haines, J. Fluid Mech., 226 (1991), 37–61 | DOI | Zbl

[24] S. V. Muzylev, “Volny v okeane pod ledyanym pokrovom: osnovy teorii i modelnye zadachi”, Sovremennye problemy dinamiki okeana i atmosfery, K 100-letiyu so dnya rozhdeniya prof. P. S. Lineikina, eds. A. V. Frolov, Yu. D. Resnyanskii, TRIADA LTD, M., 2010, 315–345

[25] R. G. Chowdhury, B. N. Mandal, Fluid Dynam Res., 38:4 (2006), 224–240 | DOI | MR | Zbl

[26] D. Q. Lu, S. Q. Dai, Arch. Appl. Mech., 76:1–2 (2006), 49–63 | DOI | Zbl

[27] D. Q. Lu, S. Q. Dai, Intern. J. Eng. Sci., 46:11 (2008), 1183–1193 | DOI | MR | Zbl

[28] A. A. Savin, A. S. Savin, Izv. RAN. Ser. Mekh. zhidk. i gaza, 47:2 (2012), 3–10 | DOI | MR | Zbl

[29] A. T. Ilichev, A. A. Savin, A. S. Savin, Dokl. RAN, 444:2 (2012), 156–159 | DOI | MR

[30] A. T. Ilichev, Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003

[31] K. Kirchgässner, J. Differ. Equ., 45:1 (1982), 113–127 | DOI | MR

[32] A. Mielke, Math. Meth. Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl

[33] A. Vanderbauwhede, G. Iooss, “Center manifold theory in infinite dimensions”, Dynamics Reported, Expositions in Dynamical Systems, 1, eds. C. K. R. T. Jones, U. Kirchgraber, H.-O. Walther, Springer, Berlin, Heidelberg, 1992, 125–163 | DOI | MR | Zbl

[34] M. Hãrãguṣ-Courcelle, A. Il'ichev, Eur. J. Mech. B/Fluids, 17 (1998), 739–768 | DOI | MR | Zbl

[35] G. Iooss, K. Kirchgässner, Proc. Roy. Soc. Edinburgh. Ser. A, 122:3–4 (1992), 267–299 | DOI | MR | Zbl

[36] G. Iooss, M. C. Pérouème, J. Differ. Equ., 102:1 (1993), 62–88 | DOI | MR | Zbl

[37] A. Müller, R. Ettema, “Dynamic response of an icebreaker hull to ice breaking”, Proceedings of the 7th IAHR International Symposium on Ice (Hamburg, Germany, 27–30 August, 1984), v. 2, Ice Engineering Department, Hamburg, 1984, 287–296

[38] L. D. Landau, E. M. Lifshits, Teoriya uprugosti, Nauka, M., 1987 | MR | MR

[39] A. T. Il'ichev, A. Yu. Semenov, Theoret. Comput. Fluid Dynam., 3:6 (1992), 307–326 | DOI | Zbl

[40] Y. B. Fu, A. T. Il'ichev, IMA J. Appl. Math., 75:2 (2010), 257–268 | DOI | MR | Zbl