Equivalence of second-order ordinary differential equations to Painlevé equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 256-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All Painlevé equations except the first belong to one type of equations. In terms of invariants of these equations, we obtain criteria for the equivalence to the second Painlevé equation and to equation XXXIV in the list of $50$ equations without movable critical points. We find new necessary conditions of equivalence for the third and fourth and also special cases of the fifth and sixth Painlevé equations. We compare the invariants we use with invariants previously introduced by other authors and compare the obtained results.
Mots-clés : Painlevé equation, equivalence, invariant.
@article{TMF_2015_182_2_a4,
     author = {Yu. Yu. Bagderina},
     title = {Equivalence of second-order ordinary differential equations to {Painlev\'e} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {256--276},
     year = {2015},
     volume = {182},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/}
}
TY  - JOUR
AU  - Yu. Yu. Bagderina
TI  - Equivalence of second-order ordinary differential equations to Painlevé equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 256
EP  - 276
VL  - 182
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/
LA  - ru
ID  - TMF_2015_182_2_a4
ER  - 
%0 Journal Article
%A Yu. Yu. Bagderina
%T Equivalence of second-order ordinary differential equations to Painlevé equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 256-276
%V 182
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/
%G ru
%F TMF_2015_182_2_a4
Yu. Yu. Bagderina. Equivalence of second-order ordinary differential equations to Painlevé equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 256-276. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/

[1] A. Tresse, “Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre $y''=\omega(x,y,y')$”, Preisschriften der fürstlichen Jablonowski'schen Geselschaft XXXII, Hirzel, Leipzig, 1896 | Zbl

[2] L. Hsu, N. Kamran, Proc. London Math. Soc. (3), 58:3 (1989), 387–416 | DOI | MR | Zbl

[3] B. Kruglikov, “Point classification of second order ODEs: Tresse classification revisited and beyond”, Differential Equations – Geometry, Symmetries and Integrability. The Abel Symposium 2008 (June 18–21, 2008, Tromsø, Norway), Abel Symposia, 5, eds. B. Kruglikov, V. Lychagin, E. Straume, Springer, Berlin, 2009, 199-221, arXiv: 0809.4653 | DOI | MR | Zbl

[4] O. I. Morozov, Nauchnyi vestnik MGTU GA, 2010, no. 7(157), 92–99

[5] S. Lie, Arch. Mat. Nat., 8 (1883), 371–458

[6] R. Liouville, J. École Polytechnique, 59 (1889), 7–76

[7] A. Tresse, Acta Math., 18:1 (1894), 1–88 | DOI | MR | Zbl

[8] É. Cartan, Bull. Soc. Math. France, 52 (1924), 205–241 | DOI | MR | Zbl

[9] G. Thomsen, Abh. Math. Sem. Univ. Hamburg, 7:1 (1930), 301–328 | DOI | MR | Zbl

[10] R. A. Sharipov, Effective procedure of point classification for the equations $y''=P+3Qy'+3Ry'^2+Sy'^3$, arXiv: math.DG/9802027

[11] Yu. Yu. Bagderina, Differents. uravneniya, 43:5 (2007), 581–589 | MR | Zbl

[12] V. A. Yumaguzhin, Acta Appl. Math., 109:1 (2010), 283–313 | DOI | MR | Zbl

[13] O. I. Morozov, Nauchnyi vestnik MGTU GA, 2010, no. 7(157), 100–106

[14] Yu. Yu. Bagderina, J. Phys. A: Math. Theor., 46:20 (2013), 295201, 36 pp. | DOI | MR | Zbl

[15] E. L. Ains, Obyknovennye differentsialnye uravneniya, ONTI, GNTI Ukrainy, Kharkov, 1939

[16] P. Painlevé, Acta Math., 25:1 (1902), 1–85 | DOI | MR

[17] B. Gambier, Acta Math., 33 (1910), 1–55 | DOI | MR

[18] N. Kamran, K. G. Lamb, W. F. Shadwick, J. Differential Geom., 22:2 (1985), 139–150 | DOI | MR | Zbl

[19] N. Kamran, W. F. Shadwick, Math. Ann., 279:1–2 (1987), 117–123 | DOI | MR | Zbl

[20] N. Kamran, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8$\sp {\rm o}$ (2), 45:7 (1989) | MR | Zbl

[21] A. V. Bocharov, V. V. Sokolov, S. I. Svinolupov, On some equivalence problems for differential equations, Preprint ESI 54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna, 1993 | Zbl

[22] J. Hietarinta, V. Dryuma, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 67–74 | DOI | MR

[23] V. V. Kartak, TMF, 173:2 (2012), 245–267 | DOI | DOI | MR | Zbl

[24] M. V. Babich, L. A. Bordag, J. Differ. Equ., 157:2 (1999), 452–485 | DOI | MR | Zbl

[25] R. Iyer, C. V. Johnson, J. S. Pennington, J. Phys. A: Math. Theor., 44:1 (2011), 015403, 35 pp. | DOI | MR | Zbl

[26] V. V. Kartak, Commun. Nonlinear Sci. Numer. Simul., 19:9 (2014), 2993–3000 | DOI | MR