@article{TMF_2015_182_2_a4,
author = {Yu. Yu. Bagderina},
title = {Equivalence of second-order ordinary differential equations to {Painlev\'e} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {256--276},
year = {2015},
volume = {182},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/}
}
Yu. Yu. Bagderina. Equivalence of second-order ordinary differential equations to Painlevé equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 256-276. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/
[1] A. Tresse, “Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre $y''=\omega(x,y,y')$”, Preisschriften der fürstlichen Jablonowski'schen Geselschaft XXXII, Hirzel, Leipzig, 1896 | Zbl
[2] L. Hsu, N. Kamran, Proc. London Math. Soc. (3), 58:3 (1989), 387–416 | DOI | MR | Zbl
[3] B. Kruglikov, “Point classification of second order ODEs: Tresse classification revisited and beyond”, Differential Equations – Geometry, Symmetries and Integrability. The Abel Symposium 2008 (June 18–21, 2008, Tromsø, Norway), Abel Symposia, 5, eds. B. Kruglikov, V. Lychagin, E. Straume, Springer, Berlin, 2009, 199-221, arXiv: 0809.4653 | DOI | MR | Zbl
[4] O. I. Morozov, Nauchnyi vestnik MGTU GA, 2010, no. 7(157), 92–99
[5] S. Lie, Arch. Mat. Nat., 8 (1883), 371–458
[6] R. Liouville, J. École Polytechnique, 59 (1889), 7–76
[7] A. Tresse, Acta Math., 18:1 (1894), 1–88 | DOI | MR | Zbl
[8] É. Cartan, Bull. Soc. Math. France, 52 (1924), 205–241 | DOI | MR | Zbl
[9] G. Thomsen, Abh. Math. Sem. Univ. Hamburg, 7:1 (1930), 301–328 | DOI | MR | Zbl
[10] R. A. Sharipov, Effective procedure of point classification for the equations $y''=P+3Qy'+3Ry'^2+Sy'^3$, arXiv: math.DG/9802027
[11] Yu. Yu. Bagderina, Differents. uravneniya, 43:5 (2007), 581–589 | MR | Zbl
[12] V. A. Yumaguzhin, Acta Appl. Math., 109:1 (2010), 283–313 | DOI | MR | Zbl
[13] O. I. Morozov, Nauchnyi vestnik MGTU GA, 2010, no. 7(157), 100–106
[14] Yu. Yu. Bagderina, J. Phys. A: Math. Theor., 46:20 (2013), 295201, 36 pp. | DOI | MR | Zbl
[15] E. L. Ains, Obyknovennye differentsialnye uravneniya, ONTI, GNTI Ukrainy, Kharkov, 1939
[16] P. Painlevé, Acta Math., 25:1 (1902), 1–85 | DOI | MR
[17] B. Gambier, Acta Math., 33 (1910), 1–55 | DOI | MR
[18] N. Kamran, K. G. Lamb, W. F. Shadwick, J. Differential Geom., 22:2 (1985), 139–150 | DOI | MR | Zbl
[19] N. Kamran, W. F. Shadwick, Math. Ann., 279:1–2 (1987), 117–123 | DOI | MR | Zbl
[20] N. Kamran, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8$\sp {\rm o}$ (2), 45:7 (1989) | MR | Zbl
[21] A. V. Bocharov, V. V. Sokolov, S. I. Svinolupov, On some equivalence problems for differential equations, Preprint ESI 54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna, 1993 | Zbl
[22] J. Hietarinta, V. Dryuma, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 67–74 | DOI | MR
[23] V. V. Kartak, TMF, 173:2 (2012), 245–267 | DOI | DOI | MR | Zbl
[24] M. V. Babich, L. A. Bordag, J. Differ. Equ., 157:2 (1999), 452–485 | DOI | MR | Zbl
[25] R. Iyer, C. V. Johnson, J. S. Pennington, J. Phys. A: Math. Theor., 44:1 (2011), 015403, 35 pp. | DOI | MR | Zbl
[26] V. V. Kartak, Commun. Nonlinear Sci. Numer. Simul., 19:9 (2014), 2993–3000 | DOI | MR