Equivalence of second-order ordinary differential equations to Painlev\'e equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 256-276
Voir la notice de l'article provenant de la source Math-Net.Ru
All Painlevé equations except the first belong to one type of equations. In terms of invariants of these equations, we obtain criteria for the equivalence to the second Painlevé equation and to equation XXXIV in the list of $50$ equations without movable critical points. We find new necessary conditions of equivalence for the third and fourth and also special cases of the fifth and sixth Painlevé equations. We compare the invariants we use with invariants previously introduced by other authors and compare the obtained results.
Keywords:
Painlevé equation
Mots-clés : equivalence, invariant.
Mots-clés : equivalence, invariant.
@article{TMF_2015_182_2_a4,
author = {Yu. Yu. Bagderina},
title = {Equivalence of second-order ordinary differential equations to {Painlev\'e} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {256--276},
publisher = {mathdoc},
volume = {182},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/}
}
TY - JOUR AU - Yu. Yu. Bagderina TI - Equivalence of second-order ordinary differential equations to Painlev\'e equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2015 SP - 256 EP - 276 VL - 182 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/ LA - ru ID - TMF_2015_182_2_a4 ER -
Yu. Yu. Bagderina. Equivalence of second-order ordinary differential equations to Painlev\'e equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 256-276. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a4/