Darboux integrability of discrete two-dimensional Toda lattices
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 231-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the Darboux integrability of semidiscrete and discrete two-dimensional Toda lattices corresponding to simple Lie algebras of the $A$ and $C$ series.
Keywords: discrete Toda lattice, discrete exponential system, Darboux integrability, integral along characteristics.
@article{TMF_2015_182_2_a3,
     author = {S. V. Smirnov},
     title = {Darboux integrability of discrete two-dimensional {Toda} lattices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--255},
     year = {2015},
     volume = {182},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a3/}
}
TY  - JOUR
AU  - S. V. Smirnov
TI  - Darboux integrability of discrete two-dimensional Toda lattices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 231
EP  - 255
VL  - 182
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a3/
LA  - ru
ID  - TMF_2015_182_2_a3
ER  - 
%0 Journal Article
%A S. V. Smirnov
%T Darboux integrability of discrete two-dimensional Toda lattices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 231-255
%V 182
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a3/
%G ru
%F TMF_2015_182_2_a3
S. V. Smirnov. Darboux integrability of discrete two-dimensional Toda lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 231-255. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a3/

[1] M. Toda, J. Phys. Soc. Japan, 22:2 (1967), 431–436 | DOI

[2] O. I. Bogoyavlensky, Commun. Math. Phys., 51:3 (1976), 201–209 | DOI | MR

[3] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448

[4] A. N. Leznov, 42, no. 3, 1980, 343–349 | DOI | MR | Zbl

[5] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, Commun. Math. Phys., 79:4 (1981), 473–488 | DOI | MR

[6] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, OFM BFAN SSSP, Ufa, 1981

[7] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–21 | DOI | MR | Zbl

[8] Yu. B. Suris, Algebra i analiz, 2:2 (1990), 141–157 | MR | Zbl

[9] J. Liouville, J. Math. Pure Appl., 18 (1853), 71–74

[10] V. E. Adler, S. Ya. Startsev, TMF, 121:2 (1999), 271–284 | DOI | DOI | MR | Zbl

[11] R. S. Ward, Phys. Lett. A, 199:1–2 (1995), 45–48 | DOI | MR | Zbl

[12] I. T. Khabibullin, TMF, 146:2 (2006), 208–221 | DOI | DOI | MR | Zbl

[13] S. V. Smirnov, TMF, 172:3 (2012), 387–402 | DOI | DOI | MR | Zbl

[14] I. Habibullin, K. Zheltukhin, M. Yangubaeva, J. Phys. A: Math. Theor., 44:46 (2011), 465202, 20 pp., arXiv: 1105.4446 | DOI | MR | Zbl

[15] R. Garifullin, I. Habibullin, M. Yangubaeva, SIGMA, 8 (2012), 062, 33 pp. | DOI | MR | Zbl

[16] A. B. Shabat, Phys. Lett. A, 200:2 (1995), 121–133 | DOI | MR | Zbl

[17] G. Darboux, Leçons sur la théorie générale des surfaces, v. 2, Gautier-Villars, Paris, 1915

[18] A. B. Shabat, TMF, 103:1 (1995), 170–175 | DOI | MR | Zbl

[19] V. E. Adler, I. T. Habibullin, J. Phys. A: Math. Gen., 28 (1995), 6717–6729 | DOI | MR | Zbl

[20] B. Gürel, I. Habibullin, Phys. Lett. A, 233:1–2, 68–72 | DOI | MR | Zbl

[21] I. T. Khabibullin, TMF, 143:1 (2005), 33–48 | DOI | DOI | MR | Zbl

[22] D. K. Demskoi, TMF, 163:1 (2010), 79–85 | DOI | DOI | Zbl

[23] A. M. Gureva, A. V. Zhiber, TMF, 138:3 (2004), 401–421 | DOI | DOI | MR

[24] V. V. Sokolov, S. Ya. Startsev, TMF, 155:2 (2008), 344–355 | DOI | DOI | MR | Zbl

[25] S. P. Tsarev, Tr. MIAN, 225 (1999), 389–399 | MR | Zbl

[26] A. V. Zhiber, V. V. Sokolov, UMN, 56:1(337) (2001), 63–106 | DOI | DOI | MR | Zbl

[27] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | DOI | MR | Zbl

[28] I. T. Khabibullin, A. Pekan, TMF, 151:3 (2007), 413–423 | DOI | DOI | MR | Zbl

[29] A. V. Zabrodin, TMF, 113:2 (1997), 179–230 | DOI | DOI | MR