Blowing up solutions of the modified Novikov–Veselov equation and
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 213-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a construction of blowup solutions of the modified Novikov–Veselov equation based on the Moutard transformation of the two-dimensional Dirac operators and on its geometric interpretation in terms of surface geometry. We consider an explicit example of such a solution constructed using the minimal Enneper surface.
Keywords: blowup solution, modified Novikov–Veselov equation, two-dimensional Dirac operator, Weierstrass representation of surfaces, minimal surface.
Mots-clés : Moutard transformation
@article{TMF_2015_182_2_a1,
     author = {I. A. Taimanov},
     title = {Blowing up solutions of the~modified {Novikov{\textendash}Veselov} equation and},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--222},
     year = {2015},
     volume = {182},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a1/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Blowing up solutions of the modified Novikov–Veselov equation and
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 213
EP  - 222
VL  - 182
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a1/
LA  - ru
ID  - TMF_2015_182_2_a1
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Blowing up solutions of the modified Novikov–Veselov equation and
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 213-222
%V 182
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a1/
%G ru
%F TMF_2015_182_2_a1
I. A. Taimanov. Blowing up solutions of the modified Novikov–Veselov equation and. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a1/

[1] I. A. Taimanov, Matem. zametki, 97:1 (2015), 126–138, arXiv: 1408.4464 | DOI

[2] Delong Yu, Q. P. Liu, Shikun Wang, J. Phys. A: Math. Gen., 35:16 (2001), 3779–3785 | DOI | MR

[3] L. V. Bogdanov, TMF, 70:2 (1987), 309–314 | DOI | MR | Zbl

[4] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[5] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[6] I. A. Taimanov, S. P. Tsarev, TMF, 157:2 (2008), 188–207, arXiv: 0801.3225 | DOI | DOI | MR | Zbl

[7] I. A. Taimanov, S. P. Tsarev, Dokl. RAN, 240:6 (2008), 744–745 | MR

[8] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, geometry, and topology: on the crossroad, American Mathematical Society. Transl., Ser. 2, 179, Advances in the Mathematical Sciences, 33, eds. V. M. Buchstaber, S. P. Novikov, AMS, Providence, RI, 1997, 133–151, arXiv: dg-ga/9511005 | MR | Zbl

[9] B. G. Konopelchenko, Stud. Appl. Math., 96:1 (1996), 9–51 | DOI | MR | Zbl

[10] I. A. Taimanov, UMN, 61:1(367) (2006), 85–164 | DOI | DOI | MR | Zbl

[11] T. Lamm, Huy The Nguyen, “Branched Willmore spheres”, J. Reine Angew. Math., Ahead of print (May 2013) | DOI | MR

[12] I. A. Taimanov, Tr. MIAN, 225 (1999), 339–361, Nauka, M. | MR | Zbl

[13] C. Bohle, G. P. Peters, Trans. Amer. Math. Soc., 363:10 (2011), 5419–5463 | DOI | MR | Zbl

[14] I. A. Taimanov, A fast decaying solution to the modified Novikov–Veselov equation with a one-point singularity, arXiv: 1408.4723