Pseudotoric structures on a hyperplane section of a toric manifold
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 195-212
Cet article a éte moissonné depuis la source Math-Net.Ru
We continue to investigate pseudotoric geometry. Namely, we present a type of nontoric manifolds with pseudotoric structures. As an application, we construct a new pseudotoric structure on two-dimensional complex quadrics.
Keywords:
toric manifold, pseudotoric structure, projective space, hyperplane section, integrable system.
@article{TMF_2015_182_2_a0,
author = {N. A. Tyurin},
title = {Pseudotoric structures on a~hyperplane section of a~toric manifold},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {195--212},
year = {2015},
volume = {182},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a0/}
}
N. A. Tyurin. Pseudotoric structures on a hyperplane section of a toric manifold. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 195-212. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a0/
[1] M. Audin, Torus Actions on Symplectic Manifolds, Progress in Mathematics, 93, Birkhäuser, Basel, 2004 | MR | Zbl
[2] N. A. Tyurin, TMF, 162:3 (2010), 307–333 | DOI | DOI | MR | Zbl
[3] N. A. Tyurin, TMF, 167:2 (2011), 193–205 | DOI | DOI | Zbl
[4] N. A. Tyurin, UMN, 66:1(397) (2011), 185–186 | DOI | MR | Zbl
[5] P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley Sons, New York, 1994 | DOI | MR | Zbl
[6] S. A. Belev, N. A. Tyurin, Matem. zametki, 87:1 (2010), 48–59 | DOI | DOI | MR | Zbl