Pseudotoric structures on a hyperplane section of a toric manifold
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 195-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue to investigate pseudotoric geometry. Namely, we present a type of nontoric manifolds with pseudotoric structures. As an application, we construct a new pseudotoric structure on two-dimensional complex quadrics.
Keywords: toric manifold, pseudotoric structure, projective space, hyperplane section, integrable system.
@article{TMF_2015_182_2_a0,
     author = {N. A. Tyurin},
     title = {Pseudotoric structures on a~hyperplane section of a~toric manifold},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {195--212},
     year = {2015},
     volume = {182},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a0/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Pseudotoric structures on a hyperplane section of a toric manifold
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 195
EP  - 212
VL  - 182
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a0/
LA  - ru
ID  - TMF_2015_182_2_a0
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Pseudotoric structures on a hyperplane section of a toric manifold
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 195-212
%V 182
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a0/
%G ru
%F TMF_2015_182_2_a0
N. A. Tyurin. Pseudotoric structures on a hyperplane section of a toric manifold. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 2, pp. 195-212. http://geodesic.mathdoc.fr/item/TMF_2015_182_2_a0/

[1] M. Audin, Torus Actions on Symplectic Manifolds, Progress in Mathematics, 93, Birkhäuser, Basel, 2004 | MR | Zbl

[2] N. A. Tyurin, TMF, 162:3 (2010), 307–333 | DOI | DOI | MR | Zbl

[3] N. A. Tyurin, TMF, 167:2 (2011), 193–205 | DOI | DOI | Zbl

[4] N. A. Tyurin, UMN, 66:1(397) (2011), 185–186 | DOI | MR | Zbl

[5] P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley Sons, New York, 1994 | DOI | MR | Zbl

[6] S. A. Belev, N. A. Tyurin, Matem. zametki, 87:1 (2010), 48–59 | DOI | DOI | MR | Zbl