Nontrivial quantization of $\phi^4_n$, $n\ge2$
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 1, pp. 103-111
Voir la notice de l'article provenant de la source Math-Net.Ru
The conventional quantization of covariant $\phi^4_n$ scalar field models for space–time dimensions $n\ge5$ is trivial, and this may also be true for $n=4$. But an alternative $O(\hbar)$ counterterm leads to nontrivial results for all $n\ge4$ and also provides a different quantization for $n=2,3$. We determine the counterterm that provides these desirable properties as simply and directly as possible. The same counterterm also resolves models such as $\phi^p_n$ for all even $p$ including those where $p>2n/(n-2)$, which are traditionally regarded as nonrenormalizable.
Keywords:
nontriviality of phi to the fourth, overcoming nonrenormalizability,
mixed model.
@article{TMF_2015_182_1_a5,
author = {J. R. Klauder},
title = {Nontrivial quantization of $\phi^4_n$, $n\ge2$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {103--111},
publisher = {mathdoc},
volume = {182},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a5/}
}
J. R. Klauder. Nontrivial quantization of $\phi^4_n$, $n\ge2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 1, pp. 103-111. http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a5/