Nontrivial quantization of $\phi^4_n$, $n\ge2$
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 1, pp. 103-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conventional quantization of covariant $\phi^4_n$ scalar field models for space–time dimensions $n\ge5$ is trivial, and this may also be true for $n=4$. But an alternative $O(\hbar)$ counterterm leads to nontrivial results for all $n\ge4$ and also provides a different quantization for $n=2,3$. We determine the counterterm that provides these desirable properties as simply and directly as possible. The same counterterm also resolves models such as $\phi^p_n$ for all even $p$ including those where $p>2n/(n-2)$, which are traditionally regarded as nonrenormalizable.
Keywords: nontriviality of phi to the fourth, overcoming nonrenormalizability, mixed model.
@article{TMF_2015_182_1_a5,
     author = {J. R. Klauder},
     title = {Nontrivial quantization of $\phi^4_n$, $n\ge2$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {103--111},
     year = {2015},
     volume = {182},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a5/}
}
TY  - JOUR
AU  - J. R. Klauder
TI  - Nontrivial quantization of $\phi^4_n$, $n\ge2$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 103
EP  - 111
VL  - 182
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a5/
LA  - ru
ID  - TMF_2015_182_1_a5
ER  - 
%0 Journal Article
%A J. R. Klauder
%T Nontrivial quantization of $\phi^4_n$, $n\ge2$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 103-111
%V 182
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a5/
%G ru
%F TMF_2015_182_1_a5
J. R. Klauder. Nontrivial quantization of $\phi^4_n$, $n\ge2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 1, pp. 103-111. http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a5/

[1] M. Aizenman, Phys. Rev. Lett., 47:1 (1981), 1–4 | DOI | MR

[2] J. Fröhlich, Nucl. Phys. B, 200:2 (1982), 281–296 | DOI | MR

[3] B. Freedman, P. Smolensky, D. Weingarten, Phys. Lett. B, 113:6 (1982), 481–486 | DOI | MR

[4] D. J. E. Callaway, Phys. Rep., 167:5 (1988), 241–320 | DOI

[5] J. Glimm, A. Jaffe, Quantum Physics, Springer, New York, 1987 | MR

[6] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, Mir, M., 1984 | MR | MR

[7] J. R. Klauder, J. Phys. A: Math. Theor., 44:27 (2011), 273001, 30 pp., arXiv: ; Modern Phys. Lett. A, 27:21 (2012), 1250117, 9 pp., arXiv: 1101.17061112.0803 | DOI | MR | Zbl | DOI | MR | Zbl

[8] J. R. Klauder, Beyond Conventional Quantization, Cambridge Univ. Press, Cambridge, 2005 | MR

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[10] J. Stankowicz, private communication, 2010