Slavnov–Taylor and Ward identities in the electroweak theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 1, pp. 65-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the electroweak theory, we discuss a class of gauge-fixing choices suitable for calculating electromagnetic processes. In particular, we show that with our choices, in addition to the basic Slavnov–Taylor identities guaranteeing that physical results are independent of the choice of the gauge fixing, we also have the standard Ward identities in quantum electrodynamics, which play a well-known crucial role in calculating electromagnetic processes and, specifically, in analyzing the electromagnetic radiative corrections.
Keywords: electroweak theory, Slavnov–Taylor аidentity, Ward identity, nonlinear $\xi$ gauge, renormalization.
@article{TMF_2015_182_1_a2,
     author = {C. Becchi},
     title = {Slavnov{\textendash}Taylor and {Ward} identities in the~electroweak theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {65--75},
     year = {2015},
     volume = {182},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a2/}
}
TY  - JOUR
AU  - C. Becchi
TI  - Slavnov–Taylor and Ward identities in the electroweak theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 65
EP  - 75
VL  - 182
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a2/
LA  - ru
ID  - TMF_2015_182_1_a2
ER  - 
%0 Journal Article
%A C. Becchi
%T Slavnov–Taylor and Ward identities in the electroweak theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 65-75
%V 182
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a2/
%G ru
%F TMF_2015_182_1_a2
C. Becchi. Slavnov–Taylor and Ward identities in the electroweak theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a2/

[1] C. M. Becchi, G. Ridolfi, An Introduction to Relativistic Processes and the Standard Model of Electroweak Interactions, Springer Internat. Publ., Switzerland, 2014 | MR | Zbl

[2] D. R. Yennie, S. C. Frautschi, H. Suura, Ann. Phys. (N. Y.), 13:3 (1961), 379–452 | DOI

[3] G. 't Hooft, Nucl. Phys. B, 33:1 (1971), 173–199 | DOI

[4] A. A. Slavnov, TMF, 10:2 (1972), 153–161 ; A. A. Slavnov, Scholarpedia, 3:10 (2008), 7119 | DOI | DOI

[5] J. C. Taylor, Nucl. Phys. B, 33:2 (1971), 436–444 | DOI | MR

[6] J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos, Nucl. Phys. B, 106 (1976), 292–340 | DOI

[7] A. I. Vainshtein, M. B. Voloshin, V. I. Zakharov, V. A. Shifman, YaF, 30 (1979), 1368–1378

[8] A. Rouet, R. Stora, “Models with renormalizable Lagrangians: Perturbative approach to symmetry breaking”, Enseignement du troisième cycle de la Physique en Suisse Romande, Univerities of Geneva, Lausanne, 1973

[9] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, Mir, M., 1984 ; J. Zinn-Justin, Scholarpedia, 4:1 (2009), 7120 | MR | MR | DOI

[10] G. Bandelloni, C. Becchi, A. Blasi, R. Collina, Ann. Inst. Henry Poincaré Sect. A (N. S.), 28:3 (1978), 255–285 | MR

[11] K. Fujikawa, Phys. Rev. D, 7:2 (1973), 393–398 ; M. Bacé, N. D. Hari Dass, Ann. Phys., 94:2 (1975), 349–373 ; B. W. Lee, R. E. Shrock, Phys. Rev. D, 16:5 (1977), 1444–1473 ; M. B. Gavela, G. Girardi, C. Malleville, P. Sorba, Nucl. Phys. B, 193:1 (1981), 257–268 ; N. G. Deshpande, M. Nazerimonfared, Nucl. Phys. B, 213:3 (1983), 390–408 ; F. Boudjema, Phys. Lett. B, 187:3–4 (1987), 362–366 ; A. Denner, S. Dittmaier, R. Schuster, Nucl. Phys. B, 452:1 (1995), 80–108, arXiv: hep-ph/9503442 | DOI | MR | DOI | DOI | DOI | MR | DOI | DOI | DOI | MR