Four-dimensional gauge and gravity models from texture graphs
Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 1, pp. 182-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study statistical graph models leading in the continuum limit to relativistic fermionic fields coupled to gravity and gauge fields in four-dimensional space–time.
Keywords: graph, continuous limit, gauge invariance.
Mots-clés : Fermi surface, Dirac fermion
@article{TMF_2015_182_1_a11,
     author = {C. V. Sochichiu},
     title = {Four-dimensional gauge and gravity models from texture graphs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {182--192},
     year = {2015},
     volume = {182},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a11/}
}
TY  - JOUR
AU  - C. V. Sochichiu
TI  - Four-dimensional gauge and gravity models from texture graphs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 182
EP  - 192
VL  - 182
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a11/
LA  - ru
ID  - TMF_2015_182_1_a11
ER  - 
%0 Journal Article
%A C. V. Sochichiu
%T Four-dimensional gauge and gravity models from texture graphs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 182-192
%V 182
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a11/
%G ru
%F TMF_2015_182_1_a11
C. V. Sochichiu. Four-dimensional gauge and gravity models from texture graphs. Teoretičeskaâ i matematičeskaâ fizika, Tome 182 (2015) no. 1, pp. 182-192. http://geodesic.mathdoc.fr/item/TMF_2015_182_1_a11/

[1] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1998 | MR

[2] R. Penrose, “On the nature of quantum geometry”, Without Magic, ed. J. Klauder, Freeman, San Francisco, 1972, 333–354

[3] S.-W. Kim, J. Nishimura, A. Tsuchiya, Phys. Rev. Lett., 108:1 (2012), 011601, 5 pp., arXiv: 1108.1540 | DOI

[4] M. R. Douglas, JHEP, 05 (2003), 046, 61 pp., arXiv: hep-th/0303194 | DOI | MR

[5] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Modern Phys., 81:1 (2009), 109–162, arXiv: 0709.1163 | DOI

[6] P. Hořava, Phys. Rev. Lett., 95:1 (2005), 016405, 4 pp. | DOI

[7] G. E. Volovik, The Universe in a Helium Droplet, International Series of Monographs on Physics, 117, Oxford Univ. Press, Oxford, 2009 | MR

[8] M. F. Atiyah, R. Bott, A. Shapiro, Topology, 3:suppl. 1 (1964), 3–38 | DOI | MR | Zbl

[9] C. Sochichiu, J. Phys. A: Math. Theor., 46:1 (2013), 015002, 18 pp., arXiv: 1112.5937 | DOI | MR | Zbl

[10] C. Sochichiu, Internat. J. Modern Phys. B, 26:5 (2012), 1250055, 18 pp., arXiv: 1012.5354 | DOI | MR | Zbl

[11] M. A. H. Vozmediano, M. I. Katsnelson, F. Guinea, Phys. Rep., 496:4–5 (2010), 109–148, arXiv: 1003.5179 | DOI | MR

[12] K. G. Wilson, Phys. Rev. B, 4:9 (1971), 3174–3183 | DOI | Zbl

[13] H. B. Nielsen, M. Ninomiya, Nucl. Phys. B, 185:1 (1981), 20–40 | DOI | MR

[14] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, World Sci., Singapore, 2008 | MR | Zbl

[15] A. D. Sakharov, Dokl. AN SSSR, 177:1 (1967), 70–71