@article{TMF_2014_181_3_a9,
author = {G. A. Sardanashvily},
title = {Classical {Higgs} fields},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {553--567},
year = {2014},
volume = {181},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a9/}
}
G. A. Sardanashvily. Classical Higgs fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 553-567. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a9/
[1] G. Sardanashvily, Internat. J. Geom. Meth. Modern Phys., 5:2 (2008), v–xvi | DOI | MR | Zbl
[2] G. Sardanashvily, Internat. J. Geom. Meth. Modern Phys., 5:7 (2008), 1163–1189 | DOI | MR | Zbl
[3] G. Giachetta, L. Mangiarotti, G. Sardanashvily, Advanced Classical Field Theory, World Sci., Singapore, 2009 | MR | Zbl
[4] L. Mangiarotti, G. Sardanashvily, Connections in Classical and Quantum Field Theory, World Sci., Singapore, 2000 | MR | Zbl
[5] D. Ivanenko, G. Sardanashvily, Phys. Rep., 94:1 (1983), 1–45 | DOI | MR
[6] A. Trautman, Differential Geometry for Physicists, Monographs and Textbooks in Physical Science, 2, Bibliopolis, Naples, 1984 | MR | Zbl
[7] M. Keyl, J. Math. Phys., 32:4 (1991), 1065–1071 | DOI | MR | Zbl
[8] G. Sardanashvily, J. Math. Phys., 33:4 (1992), 1546–1549 | DOI | MR
[9] G. Sardanashvily, Internat. J. Geom. Meth. Modern Phys., 3:1 (2006), 139–148 | DOI | MR
[10] G. A. Sardanashvili, TMF, 132:2 (2002), 318–328 | DOI | DOI | MR | Zbl
[11] G. Sardanashvily, Internat. J. Geom. Meth. Modern Phys., 8:8 (2011), 1869–1895 | DOI | MR | Zbl
[12] D. J. Saunders, The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series, 142, Cambridge Univ. Press, Cambridge, 1989 | DOI | MR | Zbl
[13] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1972 | MR
[14] S. Kobayashi, Transformation Groups in Differential Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 70, Springer, Berlin, 1972 | MR | Zbl
[15] R. Zulanke, P. Wintgen, Differentialgeometrie und Faserbündel, Hochschulbucher fur Mathematik, 75, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972 | MR | Zbl
[16] F. Gordejuela, J. Masqué, J. Phys. A, 28:2 (1995), 497–510 | DOI | MR | Zbl
[17] M. Godina, P. Matteucci, J. Geom. Phys., 47:1 (2003), 66-86, arXiv: math/0201235 | DOI | MR | Zbl
[18] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, John Wiley, New York, 1965 | MR
[19] G. Sardanashvily, O. Zakharov, Gauge Gravitation Theory, World Sci., Singapore, 1992 | MR
[20] G. Sardanashvily, J. Math. Phys., 39:9 (1998), 4874–4890 | DOI | MR | Zbl
[21] G. Mackey, Induced Representations of Groups and Quantum Mechanics, W. A. Benjamin, New York, 1968 | MR | Zbl
[22] S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177:5 (1969), 2239–2247 | DOI
[23] A. Joseph, A. I. Solomon, J. Math. Phys., 11:3 (1970), 748–761 | DOI | MR | Zbl
[24] M. Palese, E. Winterroth, J. Phys.: Conf. Ser., 411:1 (2013), 012025, 6 pp. | DOI | MR