Classical Higgs fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 553-567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a classical gauge theory on a principal fiber bundle $P\to X$ in the case where its structure group $G$ is reduced to a subgroup $H$ in the presence of classical Higgs fields described by global sections of the quotient fiber bundle $P/H\to X$. We show that matter fields with the exact symmetry group $H$ in such a theory are described by sections of the composition fiber bundle $Y\to P/H\to X$, where $Y\to P/H$ is the fiber bundle with the structure group $H$, and the Lagrangian of these sections is factored by virtue of the vertical covariant differential determined by a connection on the fiber bundle $Y\to P/H$.
Keywords: gauge field, Higgs field, matter field, fiber bundle, connection.
@article{TMF_2014_181_3_a9,
     author = {G. A. Sardanashvily},
     title = {Classical {Higgs} fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {553--567},
     year = {2014},
     volume = {181},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a9/}
}
TY  - JOUR
AU  - G. A. Sardanashvily
TI  - Classical Higgs fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 553
EP  - 567
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a9/
LA  - ru
ID  - TMF_2014_181_3_a9
ER  - 
%0 Journal Article
%A G. A. Sardanashvily
%T Classical Higgs fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 553-567
%V 181
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a9/
%G ru
%F TMF_2014_181_3_a9
G. A. Sardanashvily. Classical Higgs fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 553-567. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a9/

[1] G. Sardanashvily, Internat. J. Geom. Meth. Modern Phys., 5:2 (2008), v–xvi | DOI | MR | Zbl

[2] G. Sardanashvily, Internat. J. Geom. Meth. Modern Phys., 5:7 (2008), 1163–1189 | DOI | MR | Zbl

[3] G. Giachetta, L. Mangiarotti, G. Sardanashvily, Advanced Classical Field Theory, World Sci., Singapore, 2009 | MR | Zbl

[4] L. Mangiarotti, G. Sardanashvily, Connections in Classical and Quantum Field Theory, World Sci., Singapore, 2000 | MR | Zbl

[5] D. Ivanenko, G. Sardanashvily, Phys. Rep., 94:1 (1983), 1–45 | DOI | MR

[6] A. Trautman, Differential Geometry for Physicists, Monographs and Textbooks in Physical Science, 2, Bibliopolis, Naples, 1984 | MR | Zbl

[7] M. Keyl, J. Math. Phys., 32:4 (1991), 1065–1071 | DOI | MR | Zbl

[8] G. Sardanashvily, J. Math. Phys., 33:4 (1992), 1546–1549 | DOI | MR

[9] G. Sardanashvily, Internat. J. Geom. Meth. Modern Phys., 3:1 (2006), 139–148 | DOI | MR

[10] G. A. Sardanashvili, TMF, 132:2 (2002), 318–328 | DOI | DOI | MR | Zbl

[11] G. Sardanashvily, Internat. J. Geom. Meth. Modern Phys., 8:8 (2011), 1869–1895 | DOI | MR | Zbl

[12] D. J. Saunders, The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series, 142, Cambridge Univ. Press, Cambridge, 1989 | DOI | MR | Zbl

[13] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1972 | MR

[14] S. Kobayashi, Transformation Groups in Differential Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 70, Springer, Berlin, 1972 | MR | Zbl

[15] R. Zulanke, P. Wintgen, Differentialgeometrie und Faserbündel, Hochschulbucher fur Mathematik, 75, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972 | MR | Zbl

[16] F. Gordejuela, J. Masqué, J. Phys. A, 28:2 (1995), 497–510 | DOI | MR | Zbl

[17] M. Godina, P. Matteucci, J. Geom. Phys., 47:1 (2003), 66-86, arXiv: math/0201235 | DOI | MR | Zbl

[18] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, John Wiley, New York, 1965 | MR

[19] G. Sardanashvily, O. Zakharov, Gauge Gravitation Theory, World Sci., Singapore, 1992 | MR

[20] G. Sardanashvily, J. Math. Phys., 39:9 (1998), 4874–4890 | DOI | MR | Zbl

[21] G. Mackey, Induced Representations of Groups and Quantum Mechanics, W. A. Benjamin, New York, 1968 | MR | Zbl

[22] S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177:5 (1969), 2239–2247 | DOI

[23] A. Joseph, A. I. Solomon, J. Math. Phys., 11:3 (1970), 748–761 | DOI | MR | Zbl

[24] M. Palese, E. Winterroth, J. Phys.: Conf. Ser., 411:1 (2013), 012025, 6 pp. | DOI | MR