Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 538-552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the direct and inverse problems for the Hirota difference equation. We introduce the Jost solutions and scattering data and describe their properties. In a special case, we show that the Darboux transformation allows finding the evolution in discrete time and obtaining a recursive procedure for sequentially constructing the Jost solution at an arbitrary time for a given initial value. We consider some properties of the soliton solutions.
Keywords: Hirota difference equation, inverse scattering transform
Mots-clés : soliton, Darboux transformation.
@article{TMF_2014_181_3_a8,
     author = {A. K. Pogrebkov},
     title = {Hirota difference equation: {Inverse} scattering transform, {Darboux} transformation, and solitons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {538--552},
     year = {2014},
     volume = {181},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a8/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 538
EP  - 552
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a8/
LA  - ru
ID  - TMF_2014_181_3_a8
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 538-552
%V 181
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a8/
%G ru
%F TMF_2014_181_3_a8
A. K. Pogrebkov. Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 538-552. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a8/

[1] R. Hirota, J. Phys. Soc. Japan, 43:6 (1977), 2074–2078 | DOI | MR | Zbl

[2] R. Hirota, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[3] T. Miwa, Proc. Japan. Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR | Zbl

[4] L. V. Bogdanov, B. G. Konopelchenko, Physica D, 152–153 (2001), 85–96 | DOI | MR | Zbl

[5] A. V. Zabrodin, TMF, 113:2 (1997), 179–230 | DOI | DOI | MR

[6] A. V. Zabrodin, TMF, 155:1 (2008), 74–93, arXiv: 0705.4006 | DOI | DOI | MR | Zbl

[7] S. Saito, J. Nonlinear Math. Phys., 19:4 (2012), 539–550 | DOI | MR

[8] I. Krichever, P. Wiegmann, A. Zabrodin, Commun. Math. Phys., 193:2 (1998), 373–396 | DOI | MR | Zbl

[9] A. K. Pogrebkov, Algebra i analiz, 22:3 (2010), 191–205 | DOI | MR | Zbl

[10] M. Boiti, F. Pempinelli, A. K. Pogrebkov, M. K. Polivanov, TMF, 93:2 (1992), 181–210 | DOI | MR | Zbl

[11] M. Boiti, F. Pempinelli, A. K. Pogrebkov, M. C. Polivanov, Inverse Problems, 8:3 (1992), 331–364 | DOI | MR | Zbl

[12] M. Boiti, F. Pempinelli A. K. Pogrebkov, J. Math. Phys., 35:9 (1994), 4683–4718 | DOI | MR | Zbl

[13] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, Inverse Problems, 17:4 (2001), 937–957 | DOI | MR | Zbl

[14] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, J. Math. Phys., 44:8 (2003), 3309–3340 | DOI | MR | Zbl

[15] A. K. Pogrebkov, TMF, 154:3 (2008), 477–491, arXiv: nlin/0703018 | DOI | DOI | MR | Zbl

[16] A. K. Pogrebkov, “2D Toda chain and associated commutator identity”, Geometry, Topology, and Mathematical Physics. S. P. Novikov's Seminar: 2006–2007, American Mathematical Society Translations. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 261–270 | MR | Zbl

[17] M. Boiti, F. Pempinelli, A. K. Pogrebkov, TMF, 172:2 (2012), 181–197 | DOI | DOI | MR | Zbl

[18] B. Grammaticos, A. Ramani, V. Papageorgiou, J. Satsuma, R. Willox, J. Phys. A: Math. Theor., 40:42 (2007), 12619–12627 | DOI | MR | Zbl