Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 515-537 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain determinant representations for the form factors of the monodromy matrix elements in quantum integrable models solvable by the nested algebraic Bethe ansatz and having the $GL(3)$-invariant $R$-matrix. These representations can be used to calculate correlation functions in physically interesting models.
Keywords: nested algebraic Bethe ansatz, form factor.
Mots-clés : scalar product
@article{TMF_2014_181_3_a7,
     author = {S. Z. Pakulyak and E. Ragoucy and N. A. Slavnov},
     title = {Determinant representations for form factors in quantum integrable models with the~$GL(3)$-invariant $R$-matrix},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {515--537},
     year = {2014},
     volume = {181},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a7/}
}
TY  - JOUR
AU  - S. Z. Pakulyak
AU  - E. Ragoucy
AU  - N. A. Slavnov
TI  - Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 515
EP  - 537
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a7/
LA  - ru
ID  - TMF_2014_181_3_a7
ER  - 
%0 Journal Article
%A S. Z. Pakulyak
%A E. Ragoucy
%A N. A. Slavnov
%T Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 515-537
%V 181
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a7/
%G ru
%F TMF_2014_181_3_a7
S. Z. Pakulyak; E. Ragoucy; N. A. Slavnov. Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 515-537. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a7/

[1] M. Karowski, P. Weisz, Nucl. Phys. B, 139:4 (1978), 455–476 | DOI | MR

[2] F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Advanced Series in Mathematical Physics, 14, World Sci., Singapore, 1992 | DOI | MR | Zbl

[3] J. Cardy, G. Mussardo, Nucl. Phys. B, 340:2–3 (1990), 387–402 | DOI | MR

[4] G. Mussardo, Phys. Rep., 218:5–6 (1992), 215–379 | DOI | MR

[5] A. Fring, G. Mussardo, P. Simonetti, Nucl. Phys. B, 393:1–2 (1990), 413–441, arXiv: hep-th/9211053 | DOI | MR

[6] A. Koubek, G. Mussardo, Phys. Lett. B, 311:1–4 (1993), 193–201, arXiv: hep-th/9306044 | DOI | MR

[7] C. Ahn, G. Delfino, G. Mussardo, Phys. Lett. B, 317:4 (1993), 573–580, arXiv: hep-th/9306103 | DOI | MR

[8] A. B. Zamolodchikov, Nucl. Phys. B, 348:3 (1991), 619–641 | DOI | MR

[9] S. Lukyanov, A. Zamolodchikov, Nucl. Phys. B, 493 (1997), 571–587, arXiv: hep-th/9611238 | DOI | MR | Zbl

[10] S. Lukyanov, Phys. Rev. B, 59:17 (1999), 11163–11164, arXiv: cond-mat/9809254 | DOI

[11] S. Lukyanov, A. Zamolodchikov, Nucl. Phys. B, 607:3 (2001), 437–455, arXiv: hep-th/0102079 | DOI | MR | Zbl

[12] M. Jimbo, K. Miki, T. Miwa, A. Nakayashiki, Phys. Lett. A, 168:4 (1992), 256–263, arXiv: hep-th/9205055 | DOI | MR

[13] M. Jimbo, T. Miwa, Algebraic Analysis of Solvable Lattice Models, CBMS Regional Conference Series in Mathematics, 85, AMS, Providence, RI, 1995 | MR | Zbl

[14] M. Jimbo, T. Miwa, J. Phys. A: Math. Gen., 29:12 (1996), 2923–2958, arXiv: hep-th/9601135 | DOI | MR | Zbl

[15] T. Kojima, V. Korepin, N. Slavnov, Commun. Math. Phys., 188:3 (1997), 657–689, arXiv: hep-th/9611216 | DOI | MR | Zbl

[16] N. Kitanine, J. M. Maillet, V. Terras, Nucl. Phys. B, 554:3 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl

[17] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40:2 (1979), 194–220 | DOI | MR

[18] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[19] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[20] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable models”, Symétries quantiques (Les Houches, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl

[21] J. M. Maillet, V. Terras, Nucl. Phys. B, 575:3 (2000), 627–644, arXiv: hep-th/9911030 | DOI | MR | Zbl

[22] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 12 (2011), P12010, 28 pp., arXiv: 1110.0803 | DOI

[23] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 09 (2012), P09001, 33 pp., arXiv: 1206.2630 | DOI | MR

[24] J. S. Caux, J. M. Maillet, Phys. Rev. Lett., 95:7 (2005), 077201, 3 pp., arXiv: cond-mat/0502365 | DOI

[25] J. S. Caux, P. Calabrese, N. A. Slavnov, J. Stat. Mech., 01 (2007), P01008, 20 pp., arXiv: cond-mat/0611321 | DOI

[26] A. Minahan, K. Zarembo, JHEP, 03 (2003), 013, 30 pp., arXiv: hep-th/0212208 | DOI

[27] N. Beisert, M. Staudacher, Nucl. Phys. B, 670 (2003), 439–463, arXiv: hep-th/0307042 | DOI | MR | Zbl

[28] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond, L. Freyhult, N. Gromov, R. A. Janik, V. Kazakov, T. Klose, G. P. Korchemsky, C. Kristjansen, M. Magro, T. McLoughlin, J. A. Minahan, R. I. Nepomechie, A. Rej, R. Roiban, S. Schäfer-Nameki, C. Sieg, M. Staudacher, A. Torrielli, A. A. Tseytlin, P. Vieira, D. Volin, K. Zoubos, Lett. Math. Phys., 99:1–3 (2012), 3–32, arXiv: 1012.3982 | DOI | MR

[29] R. Assaraf, P. Azaria, E. Boulat, M. Caffarel, P. Lecheminant, Phys. Rev. Lett., 93:1 (2004), 016407, 4 pp., arXiv: cond-mat/0310090 | DOI

[30] H.-H. Lin, L. Balents, M. P. A. Fisher, Phys. Rev. B, 58:4 (1998), 1794–1825, arXiv: cond-mat/9801285 | DOI

[31] B. Pozsgay, W.-V. van G. Oei, M. Kormos, J. Phys. A: Math. Theor., 45:46 (2012), 465007, 34 pp., arXiv: 1204.4037 | DOI | MR | Zbl

[32] P. P. Kulish, N. Yu. Reshetikhin, J. Phys. A, 16:16 (1983), L591–L596 | DOI | MR | Zbl

[33] P. P. Kulish, N. Yu. Reshetikhin, ZhETF, 80:1 (1981), 214–228 | MR

[34] P. P. Kulish, N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 120 (1982), 92–121 | DOI | MR

[35] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 10 (2012), P10017, 25 pp., arXiv: 1207.0956 | DOI | MR

[36] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 04 (2013), P04033, 16 pp., arXiv: 1211.3968 | DOI | MR

[37] S. Pakuliak, E. Ragoucy, N. A. Slavnov, Nucl. Phys. B, 881 (2014), 343–368, arXiv: 1312.1488 | DOI | MR | Zbl

[38] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 02 (2013), P02020, 24 pp., arXiv: 1210.0768 | DOI | MR

[39] N. A. Slavnov, TMF, 79:2 (1989), 232–240 | DOI | MR

[40] N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 01 (2007), P01022, 17 pp., arXiv: hep-th/0611142 | DOI | MR

[41] N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 150 (1986), 196–213 | DOI | MR

[42] M. Wheeler, Commun. Math. Phys., 327:3 (2014), 737–777, arXiv: 1204.2089 | DOI | MR | Zbl

[43] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 09 (2012), P09003, 17 pp., arXiv: 1206.4931 | DOI | MR

[44] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[45] A. G. Izergin, V. E. Korepin, Commun. Math. Phys., 94:1 (1984), 67–92 | DOI | MR | Zbl

[46] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, Nucl. Phys. B, 712:3 (2005), 600–622, arXiv: hep-th/0406190 | DOI | MR | Zbl